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

Abstract—With the increasing interactions between natural gas
system (NGS) and power system, the component failures in one
system may propagate to the other one, threatening the reliable
operation of the whole system. Due to the neglect of such
cross-sectorial failure propagation in integrated electricity-gas
systems (IEGSs), the traditional economy-oriented reserve
expansion model may lead to unreasonable planning results. In
order to address this, an innovative reserve expansion model is
proposed to determine the allocation of energy production
components through the harmonization between costs and
reliability. Firstly, the novel multifactor-influenced reliability
indices are defined considering the synthetic effects of multiple
uncertainties, including failure propagation, load uncertainties
and generation failures. In the reliability index formulation, the
contribution of failure propagation on system reliability is
analytically expressed. To avoid the high computational
complexity, the fuzzy set theory is combined with conventional
methods, e.g. Monte-Carlo simulation technique to reduce the
numerous contingency states. The sampled contingency states are
aggregated into several clusters represented by a fuzzy number.
To effectively solve the planning model, the decomposition
approach is introduced applied to decompose the original
problem into a master problem and two correlated reliability
subproblems. Numerical studies show that the proposed model
can plan reasonable reserve to guarantee the reliability levels of
IEGSs considering failure propagation.
Index Terms—Reliability, integrated electricity-gas systems,

cross-sectorial failure propagation, long-term reserve planning,
fuzzy model.

I. INTRODUCTION

WING to their high efficiency and low carbon emissions,
the gas-fired power plants (GPPs) have a significant share

in electric power generation. The ever-increasing utilization of
GPPs strengthens the coupling relationship between natural gas
system (NGS) and electric power system (EPS), bringing new
reliability problems of integrated electricity-gas systems
(IEGSs) [1]. In specific, different from coal-fired power plants
whose fuel supply is traditionally considered sufficient, the
power output of GPPs relies on gas supply from NGS. Random
failures occurring in NGS may cause the interruption of gas
supplied to GPPs, leading to the shortage of generating capacity
and finally jeopardizing power system security [2]. Such failure
amplification process from NGS to EPS through coupled
components can be defined as cross-sectorial failure
propagation [3]. When considering the failure propagation from
NGS to EPS, small disturbances may propagate to the whole
system and further engender widespread damage. The
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catastrophic outages in Texas, America on 15th February 2021
can be served as a demonstration of cross-sectorial failure
propagation [4].

In recent years, the failure propagation issues have gained
increasing attention in both industry and academic sectors. In [5]
and [6], an integrated simulation framework is proposed to
simulate the bi-directional cascading failure propagation in
IEGSs. Reference [7] evaluates the vulnerability of IEGSs by
combining the cascading failure simulation and a machine
learning method. A graph theory-based method is proposed in
[8] to assess the impacts of failure propagation on network
robustness. In [9], a non-sequential Monte Carlo simulation
framework is proposed to analyze the reliability of IEGSs
considering failure propagation. The previous works mainly
focus on failure propagation simulation [5, 6] and reliability/
robustness analysis [7-9]. However, the countermeasures to
guarantee the reliability level of IEGSs under failure
propagation are seldom investigated.

As an effective measure to improve the reliability of IEGSs,
the long-term reserve expansion aims to determine the
deployment of different energy production components, such
as power plants, to fulfill more securely the energy
consumption of consumers [10]. Reasonable reserve planning
results can provide system operators with sufficient standby
resources to deal with demand growth or component failures.
Considering that, several studies have been carried out on the
reserve expansion of IEGSs by allocating new components. A
bi-level multi-stage programming model is proposed in [11]
considering the bi-directional energy conversion between
power system and NGS. In [12], a two-stage stochastic
optimization model is developed to realize the trade-offs
between constructing gas pipelines, GPPs and other units.
Reference [13] proposes a dynamic stochastic joint expansion
planning of IEGSs considering long-term uncertainties of gas
prices. The authors in [14] propose a bi-level model to allocate
the gas storage and uncertain wind farms considering the
temporal correlation of wind power. A multi-period framework
is proposed in [15] to determine the optimal generation,
transmission and gas network expansions. However, the system
reliability issues, especially the impacts of component failures
on system operation, are seldom considered in the system
expansion of the previous studies.

Motivated by the catastrophic outages in Texas attributed to
insufficient reserve capacity, the security and reliability issues
are essential in the reserve planning of IEGSs for reliable
energy delivery. To model the random component failures, the
N-1 criterion is widely used in combined energy system
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planning as a deterministic approach [16, 17]. Nevertheless, the
N-1 standard can only ensure the reliable operation of IEGSs
under the single component outage, whereas neglecting the
simultaneous failures of multiple components. Alternatively,
the probabilistic reliability indices, e.g. loss of load probability
(LOLP) and expected energy not supplied are considered in [2]
and [18]. The existing reliability indices of different energy
subsystems are individually formulated considering their
autogenic uncertainties, such as gas/electric load variation and
electric component failure [18-20]. However, the gas
component failures and the corresponding failure propagation,
on reliability indices of power systems are seldom considered,
which may make the long-term reserve expansion results
unreasonable. To address this, the multifactor-influenced
reliability indices are proposed in this paper considering the
synthetic effects of autogenic and external uncertainties,
including cross-sectorial failure propagation, component and
load uncertainties. On this basis, a synthetic reserve expansion
model is developed to coordinate the planning of energy
production components in IEGSs, while guaranteeing the
reliability of both subsystems.

Considering the superposed influence of multiple
uncertainties, the system contingency states for the calculation
of reliability indices can be enormous which requires high
computation resources [21]. Under this circumstance, the
traditional planning model that considers all system states may
not be applicable due to high computation complexity. In order
to address that, clustering methods are required to aggregate
adjacent system states of IEGSs to decrease the computation
burden. As a typical clustering method, the fuzzy set theory can
effectively characterize the performance behavior of system
states in one cluster (set) instead of using a single crisp number.
The degree of different system states that belong to the same set
is measured by a membership function, based on which the
features of the clustered set can be described in detail [22]. The
fuzzy set theory proved as an effective measure for the
reliability analysis [23] and operation optimization [24] of
energy systems.

Due to its effectiveness and advantage in dealing with data
clustering, the fuzzy set theory is introduced and combined
with traditional methods, e.g. Monte-Carlo simulation (MCS)
technique, to achieve great computational improvement [16]. In
specific, based on the component failure states sampled by the
MCS technique, the fuzzy theory is applied to aggregate
adjacent states into one cluster. In each cluster, the system
failure degree is represented by a fuzzy parameter, which is a
set of possible values and each value has its own membership.
Similarly, the 8760-hour load curve can also be combined with
fuzzy set theory to represent a set of aggregate load values
using fuzzy representation. On this basis, the number of system
contingency states can be significantly reduced. Accordingly,
the reserve expansion model is formulated as a fuzzy
optimization problem.

In this paper, a multifactor-influenced reliability-constrained
reserve expansion is proposed to reduce the adverse effects of
failure propagation on IEGSs. Compared with previous studies,
the innovative contributions of our paper are summarized as:

(1) By analytically expressing the contribution of failure
propagation on system reliability, the novel
multifactor-influenced reliability indices are defined
considering the autogenic and external uncertainties. The
reliability-constrained expansion model is then developed to
guarantee the long-term adequacy of IEGSs.

(2) This paper firstly combines the fuzzy set theory and MCS
technique to decrease system states for computation efficiency
improvement. Based on the defined measurement of system
failure degree, the fuzzy method is utilized to aggregate the
discrete generation failure states into one cluster.

(3) This paper proposes an efficient algorithm to solve the
developed fuzzy reserve expansion model. Optimism
parameters are introduced to deal with fuzzy numbers
considering the risk propensity of system planners. The
decomposition technique is applied to decompose the proposed
decision problem into a master problem and two correlated
reliability subproblems, where the multifactor-influenced
reliability indices can be effectively calculated considering
failure propagation.

II. THE RELATIONSHIP BETWEEN LONG-TERM RESERVE
PLANNING AND FAILURE PROPAGATION

A. Impacts of cross-sectorial failure propagation on
long-term reserve planning of IEGSs

Cross-sectorial failure propagation can be defined as the
complicated sequences of dependent events triggered by
disruptive events. Due to the coupling relationship between two
systems, the random failures occurring in NGS may propagate
to EPS through coupled components, i.e. GPPs. The detailed
cross-sectorial failure propagation mainly includes the
following steps [25].
Step 1) Initial disturbance in NGS: The initial component

failures triggered by various disturbances may make the NGS
change its operation state.
Step 2) Gas load curtailments: Due to the initial disturbance,

several measures may be adopted for the reliable operation of
NGS, such as gas production adjustment or gas load
curtailments. Due to the interruptible contracts signed between
generation units and gas companies, the gas supply of GPPs
will be firstly curtailed if the gas production cannot satisfy gas
loads [26].
Step 3) Power output reduction GPPs: The gas load

curtailments may result in the interruption of gas supply of
GPPs. Considering that, the GPPs have to reduce their output
due to insufficient gas supply.
Step 4) Electric load curtailments: Due to the reduction of

power output, all the available power plants and loads will be
re-dispatched to eliminate the power imbalance. If the adjusting
of generating output cannot realize power balance, the electric
load shedding will be utilized.

Based on the failure propagation process, we can conclude
that the random failures occurring in NGS can simultaneously
affect the reliability of NGS and EPS, leading to the increasing
requirement of power capacity. Accordingly, it is essential to
develop an integrated framework for the synergetic planning of
gas and power production capacity.
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Fig. 1. The outline of this paper to determine long-term reserve expansion
Note that failure propagation is a result of the

adjustment/dispatch decisions after the failure occurs, which
can be naturally embedded in the optimization model. However,
in the previous studies about system planning, the components
in gas systems are assumed completely available and the
gas-fired power plants can obtain sufficient fuel supply [2, 18].
Hence, the gas component failures and the corresponding
failure propagation from gas system to power system are
seldom modeled in the previous planning models.

B. The outline of this paper to determine long-term reserve
The outline to determine the long-term reserve of IEGSs is

illustrated in Fig.1. Firstly, the MCS technique and fuzzy set
theory are combined to aggregate adjacent system states into
one cluster represented by a fuzzy number. Similarly, the fuzzy
set theory is combined with the LDC model to achieve load
representation with fewer load states. According to the fuzzy
models of energy loads and component failures,
multifactor-influenced reliability indices are formulated, where
the cross-sectorial failure propagation is considered. Moreover,
the reliability-constrained reserve expansion model is
developed to determine the construction of power units, gas
suppliers and power-to-gas (P2G) units. In specific, the
proposed model is to minimize the total system costs, including
investment costs, operation costs and load interruption costs.
Finally, an efficient algorithm to solve the proposed fuzzy
models by introducing optimism parameters and benders
decomposition.

III. FUZZY MODELS TO CHARACTERIZE LOAD AND
GENERATION UNCERTAINTIES

A. Fuzzy component operation state curve to characterize
generation uncertainties

Considering the failures and maintenance of components in
IEGSs, the component operation states in each year can be
numerous. Taking EPS as an example, the sequential operation
curves of units in one year can be obtained according to their
failure and repair rates utilizing the MCS technique [27].
However, the discrete generation operation states, i.e. 1 and 0,

cannot be directly clustered using fuzzy set theory since the
quantification of failure degree is missing. Considering that, the
measurement, i.e. available generating capacity is proposed to
quantify the failure degree of power system at different states.
By aggregating the sampled unit operation states in Fig. 2, the
8760-hour generating capacity curve of EPS can be determined.

0 0 0
1 8760[ , , , , ]t t tGC GC GC0

tGC L L (1)

where 0
tGC  represents the system available generating

capacity at hour  and year t .

Fig. 2. Description of fuzzy component state curve model
The corresponding 8760-hour operation state curve of

different units 0
tO can be expressed as:

0 0
1[ , , , , ], where [ , , ]t ktO O 0 0 0 0 0

t t1 tς t8760 tς ς ςO O O O OL L L (2)
Through the clustering technique, the 8760 hourly

generating capacity curve 0
tGC can be divided into sN clusters.

The sN clusters can be expressed as , where each cluster tsGC
represents multiple hourly generating capacities.

[ , , , , ]
st t1 ts tNGC GC GC GCL L (3)

In the clustering process, the within-cluster sum of squares
(WCSS) is minimized [28]. The WCSS can be expressed as:
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t ts

GC GC

(4)

where s is the mean value of hourly generating capacity in
cluster s . Then the clustered unit operation state curve can be
expressed as:

[ , , , , ]
st t1 ts tNO O O OL L (5)

As shown in Fig.2, the annual generating capacity curve is
divided into sN subperiods, where each subperiod can
represent a generating capacity cluster. The duration of
subperiod s can be represented as:

1[ , , , , ]
s

FE FE FE FE
s ND D DD L L (6)

For conventional probability theory, the performance rate of
cluster s is usually represented by a certain value, e.g. the
mean value of load levels in this cluster. However, a single
crisp value may not effectively describe the detailed features of
the load cluster. Considering that, the fuzzy set theory is then
introduced to represent each generating capacity cluster using a
triangular membership function, as illustrated in Fig. 2. The
fuzzy representation of the performance rate of cluster s is

 0, ,tsts ts ts tsGC GC GC GC GC  
:

, where the most possible

membership 0
tsGC corresponds to the mean value of generating

capacity in cluster s , i.e. s . tsGC and tsGC denote the
smallest and the largest values of possible generating capacity
in cluster s , respectively. Accordingly, the fuzzy operating
state of unit k in cluster s can be expressed as

 0, ,ktskts kts kts ktsO O O O O  
:

, where ktsO , 0
ktsO and ktsO represent

the unit operating states when generating capacities are tsGC ,
0
tsGC and tsGC , respectively. The triangular membership

function can be represented as:

 
   
   

0 0

0 0

0,

,

,

0,

ts ts

ts ts ts ts ts ts ts

ts

ts th ts ts ts ts ts

ts ts

GC GC

GC GC GC GC GC GC GC
GC

GC GC GC GC GC GC GC

GC GC



  

 



 


     
   




(7)

The values of membership  tsGC are between 0 and 1,

which can represent the weight of tsGC in cluster s . By

representing the cluster s as a fuzzy value tsGC
:

, the degree of
different generation capacity states tsGC that belong to cluster
s can be determined by the membership function, based on
which the features of generation capacity can be described in
detail. Besides, the probability of cluster s can be determined
by the duration of this cluster, which can be calculated as

1
Pr sNFE FE

ts s ss
GC D D



   
 


:

. Note that in accordance with the

conventional probability theory, the performance
characteristics of load cluster s can also be described using the

probabilities Pr tsGC 
 
 

: and performance rates tsGC
:

of this

cluster. Due to the advantage in state aggregation and cluster
representation, the fuzzy set theory has proven an effective
method in the reliability analysis of energy systems [22].

Likewise, the fuzzy operation state curves of gas wells in
NGS can be determined by the combination of MCS and fuzzy
set theory. In specific, the fuzzy representation of production

capacity in subperiod s is  0, ,ts ts ts tsPC PC PC PC 
:

. The

corresponding fuzzy operating states of gas well w in

subperiod s is  0, ,wts wts wts wtsO O O O 
:

with duration time FG
sD .

B. Fuzzy load duration curve model to characterize load
uncertainties

Considering the stochastic fluctuation of energy demands,
the 8760-hour load curve is transformed into the fuzzy load
duration curve (FLDC) model in this paper. The procedures to
determine the fuzzy models of energy loads are in accordance
with those of component state aggregation. Taking electric load
as an example, the annual load curve before clustering is
represented as:

0 0 0
1 8760[ , , , , ]t t tPD PD PD0

tPD L L (8)
where 0

tPD  represents the electric load at hour  and year t .
Similarly, the clustering technique is introduced to divide

8760 hourly loads 0
tPD into hN clusters, as expressed in .

[ , , , , ]
ht t1 th tNPD PD PD PDL L (9)

The corresponding duration of cluster h determined by the
size of the corresponding cluster, as shown in .

1[ , , , , ]
h

E E E
h ND D DED L L (10)

By means of fuzzy set theory, the fuzzy representation of
cluster h is  0, ,thth th th thPD PD PD PD PD  

:

, where 0
thPD ,

thPD and thPD denote the mean, the smallest and the largest
values of hourly loads in cluster h , respectively.

Likewise, the annual gas loads in NGS can be transformed
into the FLDC model. The fuzzy representation of gas load
cluster h is  0, ,th th th thGD GD GD GD 

:

with duration time G
hD .

Compared to the annual load duration curve model that is
usually approximated as a limited number of states, the FLDC
model can make load presentation more accurate [29].

IV. RESERVE EXPANSION MODEL CONSIDERING
MULTIFACTOR-INFLUENCED RELIABILITY CONSTRAINTS

A. Objective Function
The proposed long-term reserve expansion model is to

minimize the total costs of IEGSs in the planning horizon. The
objective function includes energy asset investments IC , the
operation costs OC of IEGSs and the costs of unserved energy.
Equation calculates the investment costs of new power plants
and Gas suppliers. Equation represents the operation costs of
non-gas thermal units and new power plants in EPS, gas wells
and new Gas suppliers in NGS. The costs of unserved energy
are determined by multiplying the energy load curtailments and
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load shedding costs. The   11 1 td  denotes the present-worth
value, where d is the discount rate and t is the planning year.
The system state b can be obtained by combining the load
uncertainties and component failures.

  1min
1

E G
t t t t

t
t

MIENS C EGNS C
TC IC OC

d 

  
  


 (11)

 
 

 
 

 
 

max
( 1)1

max
( 1)1

max
( 1)1

1

+
1

+
1

et
et et e tt

t e

gt
gt gt g tt

t g

t
t t tt

t

CIC P z z
d
C

W z z
d
C

W z z
d


  











 










 

 

CS

CG

PG

(12)

 

 

1

1

1
1

1+
1

E
k ktb e etb tbt

t b k e

G
w wtb g gtb tbt

t b w g

OC C P C P D
d

C W C W D
d


 


 

 
      

  

 
     

  

  

  

EG CS

EW CG

(13)

where tMIENS and tEGNS represent the expected electric and
gas load curtailments at year t , respectively. E

tC and G
tC are

the shedding costs for power loads and gas loads. max
etP and etC

are the generating capacity of candidate unit e and the
investment costs, respectively. max

gtW and gtC are the production
capacity of candidate gas suppliers g and the investment costs,

respectively. max
tW and tC are the capacity of P2G facility 

and the investment costs, respectively. tz , etz and gtz denote
the construction state of candidate P2G facility  , power unit
e and gas supplier g , respectively. gtbP and etbP denote the
output of power unit g and candidate unit e for system state
b at year t . wtbW and ktbW denote the gas production of gas
well w and candidate gas supplier k for system state b at
year t . gC and eC represent generation costs of power unit g
and candidate unit e , respectively. wC and kC are gas
production costs of gas well w and candidate gas supplier k ,
respectively.

Note that the basic planning thing of the proposed model is
power unit e , gas supplier g and P2G facility  , whose
construction states represented as etz , gtz and tz and size

represented as max
etP , max

gtW and max
tW .

B. Multifactor-influenced reliability constraints considering
failure propagation
1) Comparison between multifactor-influenced reliability

indices and traditional indices
In the previous studies, the reliability indices of different

energy subsystems are individually formulated considering
their autogenic uncertainties, such as load variation and
component failure [30]. For example, the electric not supplied

(EENS) is a traditional reliability index that can be calculated
by the probability-weighted sum of electric load curtailments
for different contingency states b .

   Pr , , 8760e e e e
b b

b
EENS x y LC x y   (14)

where  Pr ,e e
b x y and  ,e e

bLC x y represent the probability

and electric load curtailments of state b . ex and ey denote the
electric load variation factor and electric component failure
factor in power systems.

In this paper, besides autogenic uncertainties, the effects of
failure propagation on system reliability indices are quantified.
Following the formulation process of traditional reliability
indices, the multifactor-influenced expected electric not
supplied (MENS) is proposed considering the synthetic effects
of failure propagation, load uncertainties and component
failures.

   

   

Pr , | Pr

, 8760

e e g g
b b

b

e e g
b b

MIENS x y z z

LC x y LC z

  

   


(15)

where  Pr , |e e g
b x y z represents the conditional probability of

electric load variation ex and electric component failures ey
for certain conditions that failures propagate from the gas
system gz .  Pr g

b z is the probability of failure propagation

from gas system to power system.  gbLC z denotes the

electric load curtailments caused by the failure propagation
factor gz .

Compared to the traditional reliability index EENS, the
proposed reliability index MIENS can more accurately quantify
the reliability levels of IEGSs and further guide reasonable
planning results.
2) Reliability index formulation in IEGSs

Considering the failure propagation process, the reliability
indices of NGS and power system are developed in sequence.
Since the reliability level of NGS is mainly affected by gas load
variation and gas well failures, the reliability index is
formulated according to the formulation process in . Hence, the
expected gas not supplied (EGNS) can be calculated based on
gas load curtailments in state b .

Pr , , 8760th wts th wtst mtb
m b

EGNS GD O GLC GD O        
   


: : : :

(16)

where Pr ,th wtsGD O 
 
 

: :

represents the probability of gas load

curtailment ,th wtsmtbGLC GD O 
 
 

: :

at node m in state b and year t ,

which can be calculated by aggregating the fuzzy load states

thGD
:

and gas well states wtsO
:

. Hence, tEGNS can be

represented as:

1 1

, 8760
s h

FG G
s h

th wtst mtbN N
m b FG G

s h
s h

D D
EGNS GLC GD O

D D
 

     
 


 

: :

(17)
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The reliability of EPS is simultaneously influenced by
electric load variation, unit outages and failure propagation
from gas systems. According to , the reliability index of power
system at year t can be represented as:

 

 

Pr , | Pr

, 8760

th ktst b mtb b mtb
m b

th ktsb b mtb

MIENS PD O GLC GLC

ELC PD O ELC GLC

    
 

        


: :

: :
(18)

It should be noted that the failure probabilities of
uncertainties in power system and gas load curtailments are
independent. Therefore, the failure probability of electric load
curtailments in can be represented as the product of

Pr ,th ktsb PD O 
 
 

: :

and  Prb mtbGLC .

By aggregating the fuzzy representations of load variation,
unit failures and gas load curtailment states, the tMIENS can
be represented as:

 

1 1 1 1

, 8760

s h s h

FG G FE E
s h s h

t N N N N
i b FG G FE E

s h s h
s h s h

th ktsb b mtb

D D D D
MIENS

D D D D

ELC PD O ELC GLC

   

 
  

 

        


   

: :

(19)

Compared to the general reliability indices in , it can found
that the load and generation uncertainties in are represented as
fuzzy numbers.

On the basis, the annual reliability indices are limited as:
limit

tEGNS EGNS (20)
limit

tMIENS MIENS (21)
where limitEGNS and limitMIENS represent the limits of
reliability indices in NGS and EPS, respectively.

C. State and construction constraints
If the candidate device is installed in IEGSs, its construction

state will be set as 1 in the following years. Hence, the
construction states of candidate power unit k , gas supplier g
and P2G facility  are restricted by:

 1 ete tz z  (22)

 1 gtg tz z  (23)

 1 ttz z   (24)

The total gas and electricity production capacity in the IEGSs
must supply the forecasted energy loads and reserve
requirements, which can be expressed as:

max max max
2tbiet et ik tb t p g

i e i k
P z P PD PR W 

 

      
CS EG

:

(25)

max max

max

mgt gt m t t
m g

tbmw tb
w

W z W z

W GD GR

 
 



 
   

 

  

  


CG PG

EW

:
(26)

where max
ikP represents the maximum output of power unit k at

node i . max
mwW represents the maximum gas production of gas

well w at node m . tbER and tbGR denote the gas reserve and
power reserve requirements of power system and NGS for
system state b at year t . 2p g denotes the conversion
efficiency of P2G facilities.

D. System operation constraints
1) Natural gas system

Gas system operation constraints in - describe the operating
conditions of gas wells, pipelines and gas suppliers. The gas
nodal balance equation is given in . The Nonlinear Weymouth
equation shows that the pipeline flow is a function of the
squared gas pressures [31]. Constraints - restrict the gas flow
direction through pipelines. Nodal squared pressures and
pipeline flows are limited in and , respectively. Constraints
and describes the operating characteristics of gas compressors.
Production limits of candidate gas suppliers and gas wells are
given in and , respectively. Constraint limits gas load
curtailments at each node.

+

mwtb mgtb m tb
w g

mtb mtb ptb ctb
p c

W W W

GD GLC




 

  

 

 

  

  

 
EW CG PG

GL GC

:
(27)

    2
ptb ptb mtb ntb ptb pM         (28)

   max max1 1ptb p ptb ptb p            (29)

   max max1 1ptb p mtb ntb ptb p              (30)

1ptb ptb    (31)
min max
m mtb m    (32)

max max
c ctb c     (33)

ctb cmtb cntb   (34)
min max
c ctb c     (35)

max0 mgtb mg gtW W z   (36)
max0 m tb m tW W z     (37)
max0 mwtb mw wtbW W o   % (38)

mtb mtbGLC GD (39)
where mwtbW , mktbW and m tbW  represent the production of gas
well w , candidate gas supplier k and P2G facility  at node

m , respectively. mtbGD
:

denotes the fuzzy gas load for system
state b at node m and year t . ptb denotes gas flow through

pipeline p for system state b at year t . mtb represents the
squared pressure at node m for system state b and year t . pM

is the transmission coefficient of pipeline p . ptb  and ptb  are
binary variables indicating gas flow direction of pipeline p .

max
p is the maximum gas flows through pipeline p . ctb and
max
c represent the gas flow and the transmission capacity of

compressor c , respectively. min
m and max

m are the minimum
and maximum squared gas pressures at node m , respectively.
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ctb denotes the squared compressor ratio of compressor c for

system state b at year t . min
c and max

c are the minimum and
maximum squared compressor ratios of compressor c ,
respectively.
2) Electric power system

The model in - describes the operating features of EPS.
Equation represents nodal power balance. Equation calculates
network power flow using DC model. Line flow limits and
nodal phase angles are limited by and , respectively.
Constraints and limit the power output of candidate units and
coal-fired power plants, respectively. The power output of
GPPs is calculated by the corresponding gas supplied to them,
as shown in . Constraint limits power load curtailments at each
node.

 

2

GG CG
ietb iktb iktb ltb

e k l

itb itb m tb p g

P P P f

PD PLC W  

  

  

  

  
CS EG EL

:
(40)

 ltb itb jtb lf x   (41)
max max
l ltb lf f f   (42)

max max
i itb i     (43)

max max
ie et ietb ie etP z P P z     (44)

max0 CG
iktb ik ktbP P o   % (45)

 GG
iktb mtb mtb ktbP GD GLC o    % (46)

itb itbPLC PD (47)

where CG
iktbP and GG

iktbP represent the power outputs of GPPs and
coal-fired power plants for system state b at node i . ietbP
represents the output of candidate unit e for system state b at

node i . itbPD
:

denotes the fuzzy electric load for system state
b at node i . ltbf denotes the electricity flow through power
line l for system state b at year t . itb and lx represent the
angle of node i for system state b and the reactance of line l ,
respectively. max

lf denotes the transmission capacity of line l .

V. SOLUTION METHODOLOGY

A. The treatment of fuzzy parameters
As discussed in section II, both the energy loads and

component states are expressed as fuzzy numbers. The reserve
planning model is formulated as a mixed-integer non-linear
optimization problem with fuzzy parameters (MNOFP).
Considering that, one effective method is to convert the fuzzy
parameters into a crisp parameter using an optimism value [32].

In specific, the fuzzy electric loads  0, ,tb tb tb tbPD PD PD PD 
:

can be replaced by which allows the MNOFP to be solved with
a compromise approach.

 0 1
2 2 2

d tbd tb tb
tb

PDPD PD
PD

  
    
 

:

(48)

where the optimism value 0 1d  can be adjusted based on
the risk propensity of system planners.

To deal with the fuzzy unit states, the corresponding fuzzy

system generating capacity tbGC
:

is firstly converted into a
crisp parameter using optimism value c in . Based on the

calculated tbGC
:

, the operating states ktbo% for different units in
subperiod b can be determined.

  01
2 2 2
c tb tb c tb

tb
GC GC GCGC

   
    
 

:

(49)

Similarly, the fuzzy gas loads and gas well state can be
replaced by crisp parameters using optimism values. On this
basis, the proposed MNOFP can be converted into a
mixed-integer non-linear programming (MINLP) problem.

It can be should that the robustness of planning results can be
guaranteed by setting a smaller optimism value. Taking electric
load tbPD

:

as an example, the system electric load level can
increase with the decrease of optimism values d . Under this
circumstance, more energy production components need to be
constructed to satisfy the requirements of energy loads.

B. The solution of the reliability-constrained reserve
expansion model

This proposed reserve planning model cannot be efficiently
solved due to the reliability constraints in (14) and (17).
Benders decomposition is therefore applied to decompose the
original optimization problem into a master problem to
optimize the base-case investment decisions, and two
subproblems to check the reliability constraints of EPS and
NGS [33].

In the steady-state analysis of gas systems, the gas flow
models can be divided into two categories [34]. The first one is
the controllable-flow model where the pipeline flows are fully
controllable and are modeled as control variables limited by
pipeline limits [2]. The second one is the noncontrollable-flow
model, i.e. Weymouth function where the pipeline flows are
modeled as state variables restricted by nodal pressures [35]. In
the gas reliability subproblem, the controllable-flow model is
utilized to guarantee the convergence and optimality of benders
cuts. The simplification of gas flow model has proved to be
acceptable for investment problems over a long time horizon
and has been widely used in system planning [2, 36]. The
measures in [35] to deal with the nonlinear and nonconvex gas
flow model in the subproblems will be introduced for future
studies about the optimal operation of IEGSs.
1) Master investment problem

The master investment problem is presented in , where the
dual cuts generated from gas system and power system
reliability subproblems are iteratively added. The master
problem mainly determines the optimal investment and
operation decisions in the base case considering load variations.
The stochastic failures of components are considered in the two
subproblems to check the reliability requirements of IEGSs.
Hence, the operating states of gas wells wtbo% and generating
units ktbo% are set as 1 in the master problem. Optimal solutions

etz$ , gtz$ and tz $ are sent to the two subproblems.
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min
S.t. +

Constraints (22)-(38), (40)-(46)
Dual reliability cuts generated
O generatedptimality cuts 

TC
TC IC OC

(50)

It should be noted that the master problem is a MINLP
problem due to gas flow equations . The auxiliary variables

ptb are firstly defined to replace    ptb ptb mtb ntb       .

Based on the second-order cone relaxation technique, the gas
flow equation can then be relaxed as [18]:

2
ptb p ptbM   (51)

   ptb ptb ptb mtb ntb         (52)

The non-linear function can then be linearized by a standard
McCormick relaxation [37], which can be represented as:

   min max1ptb ntb mtb ptb ptb m n             (53)

   max min1ptb mtb ntb ptb ptb m n             (54)

   max min1ptb ntb mtb ptb ptb m n             (55)

   min max1ptb mtb ntb ptb ptb m n             (56)

Hence, the original MINLP model can be transformed into a
mixed-integer second-order cone program (MISOCP) problem.
2) Gas system reliability subproblem

Once the construction states of gas suppliers and P2G
facilities are identified by the master problem, the NGS
reliability subproblem is to determine whether the planning
decisions satisfy the reliability requirements. The problem
objective is to minimize the total gas load curtailments for each
system state. The proposed reliability subproblem needs to
follow the constraints .

min m mtb tb
m t b

GLC D   (57)

s.t. ( )

( )

Constraints (27), (32) (39)

gtgt gt

tt t

z z

z z 











$

$ (58)

where m represents the weights of gas loads at node m that
distinguish the shedding sequence of loads supplied to GPPs
and remainders, e.g. heaters. Considering the prior curtailment
of gas supplied to GPPs, the corresponding values of m can be
slightly smaller than those for remaining loads.

Based on the gas load curtailments solved by the subproblem,
the annual tEGNS can be calculated using . When the annual

tEGNS reliability constraint is not satisfied, the dual cut will
be added to the master investment problem for the solution in
the next iteration.

 
  limit

gtmtb tb gt gt
m b g

tt t

GLC D z z

z z EGNS 










  

  

 



$

$

CG

PG

(59)

where gt and t is the dual values of the constraints

associated with the construction states of gas suppliers and P2G
facilities.
3) Power system reliability subproblem

Based on the planning decisions of power units from the
master problem, the reliability requirements of EPS are
evaluated in this subproblem. The problem objective is to
minimize the total electric load curtailments subject to the
constraints . To simplify the calculation, the power outputs of
GPPs can be determined according to the expected gas load
curtailments mtEGNS at the corresponding nodes.

min itb tb
i t b

PLC D (60)

 
s.t. ( )

Constraints (40) (45), (47)

etet et
GG
iktb mtb mt ktb

z z
P GD EGNS o







   



$

% (61)

Likewise, the annual tMIENS can be calculated using to
identify whether the reliability constraint can be satisfied. If
violated, the corresponding dual cut will be generated:

  limit
etitb tb et et

i b e

PLC D z z MIENS


     $

CS
(62)

When the reliability constraints and are satisfied, The
optimal reliability subproblem for IEGSs is modeled subjected
to . Then the reliability cost obtained in this subproblem will be
added into the investment and operation costs to calculate the
total planning cost. If it is not equal to the total planning costs
TC , the optimality cut will be added to the master problem.

   1 1min
1 1

G E
m mtb tb t itb tb t

t t
m t b i t b

GLC D C PLC D C
lc

d d


  
 

  (63)

 

s.t. ( )

( )

( )

Constraints 27 , (32) (47)

gtgt gt

etet et

tt t

z z

z z

z z 















$

$

$
(64)

   + et gtet et gt gt
e t g t

TC ic oc lc z z z z 
 

        $ $

CS CG

(65)

where ic , oc and lc denotes the variables of investment costs,
operation costs and load curtailments for the certain component
construction states determined in the master problem. Hence,
the values of ic , oc and lc can change for each iteration.

C. Solution procedures of the proposed model
Fig. 3 shows the solution procedures of the long-term reserve

expansion problem.
Step 1. Determine the fuzzy models of energy loads and

component failures using the fuzzy set theory.
Step 2. Introduce optimism values to convert fuzzy

parameters into a crisp value using and . Set iteration number
1  .

Step 3. Solve the master investment problem - and send the
optimal results gtz$ , etz$ and tz$ to steps 4 and 5. The
calculated total results of the master problem at iteration  is

 min,TC  , which is the lower bound for the optimal value of the
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original problem.
Step 4. Solve the gas system reliability subproblem - with

respect to gtz$ and tz$ . Calculate the annual reliability index
and send EGNSmt to step 5. If the reliability constraint is
violated, add the dual cut to the master problem and go to Step
3.

Fig. 3 The flow chart of the solution procedures
Step 5. Solve the power system reliability subproblem - for

certain values of etz$ andMIENSt, and calculate reliability index.
If the reliability constraint is violated, add the dual cut to the
master problem and go to Step 3.
Step 6. If all the reliability constraints in both NGS and EPS

are satisfied, solve the optimal reliability subproblem in -.
Calculate the lower bound for the optimal value of the original
problem by adding up the investment, operation and reliability
costs, which can be represented as

       max, +TC IC OC LC     .
Step 7. Determine if the convergence criterion of the Benders

decomposition is satisfied. If the convergence criterion is
violated, add the dual cut to the master problem. Let 1  

and go to Step 3. If the convergence criterion is satisfied,
Terminate.

   

   

max, min,

max, min,

2 TC TC

TC TC

 

 






(66)

where  is the tolerance of convergence.
Here, the convergence of the solution method is

demonstrated. Fig. 4 shows the relation between the master
problem and two reliability subproblems, whose solution can
be divided into two phases. In the first phase (①+② ), the
master investment problem calculates the construction states of
gas suppliers based on the feasibility cuts from the gas
reliability subproblem. The two problems are calculated
iteratively until the reliability constraint of the gas subsystem is
satisfied. After the solution process is ended, the construction
states of gas suppliers and P2G facilities, as well as gas load
shedding results can be determined.

For certain gas load shedding results in the first phase, the
generation losses of gas-fired power plants (GPPs) can then be
determined, which remain unchanged in the second phase (①+
③ ). Considering that, the interaction process between the
master problem and power reliability subproblem is similar to
that in the first phase. The construction states of power units
can be determined until the reliability constraints of power
subsystem can be satisfied. After both the feasibility of the two
subproblems is satisfied, the optimality cuts will be fed back to
the master problem for the next iteration. Note that the
developed optimality cut combines the gas and power load
curtailment costs of two subproblems, which are equivalent to
two optimality cuts respectively formulated in two phases.
Therefore, the optimization models in the two phases follow the
specific structure that is particularly amenable to the Benders
decomposition. The detailed proof of the convergence of the
solution method in each phase can be seen in [38].

Fig. 4 The relation between master problem and two reliability subproblems

VI. CASE STUDY

The IEGSs composed of the modified IEEE 30-bus power
system [39] and Belgian 20-node gas system [31] are
introduced to show the effectiveness of the proposed model.
The modified EPS is composed of six power units, where three
GPPs at electric nodes 5, 8 and 13 obtain fuels from gas nodes 3,
7 and 20. The electric load data are derived from [40]. The
modified gas system consists of 19 pipelines, three compressors
and six gas wells. The physical parameters of pipelines,
compressors and wells can be found in [31]. The hourly gas
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load levels in NGS are estimated according to the data in [41].
Both the electric loads and non-power gas loads have an
average load growth rate of 3%. The discount rate d is set as
5% and the planning horizon is set as 10 years.

Table I and Table II respectively show the data of six
candidate power units and five candidate gas suppliers. The
listed data of power plants and gas suppliers include location,
capacity, investment cost and operating cost. Note that the
investment of P2G facilities is only considered in Case study D.
The failure rates of power units and gas wells are both set as
0.001, while their repair rates are 0.02 and 0.01, respectively
[25]. The reserve requirement is 5% of energy loads at each
state. The shedding costs for electric loads and gas loads are set
as 1000$/MWh [42] and 0.64$/m3, respectively. The optimism
values of system planners are assumed as 0.5. The
pre-determined tolerance  is set as 0.01.

TABLE Ⅰ
CANDIDATE POWER UNITS DATA

Power
units Bus Capacity

(MW)
Investment cost

(103$/MW)
Operating cost

($/MWh)
ES1 30 80 250 50
ES2 26 60 210 45
ES3 17 50 190 55
ES4 15 60 230 45
ES5 10 50 220 40
ES6 4 30 180 40

TABLE ⅠI
CANDIDATE GAS SUPPLIER AND P2G DATA

Gas
suppliers Node Capacity

(104m3)
Investment cost

($/m3)
Operating cost

($/m3h)
GS1 7 4 6000 0.020
GS2 17 3.5 6300 0.015
GS3 16 2.8 6200 0.025
GS4 20 2.8 6200 0.025
GS5 4 3.2 6300 0.015

A. Effectiveness analysis of the proposed model compared to
conventional existing models

In this case, the effectiveness of the proposed model with
multifactor-influenced reliability indices is demonstrated
compared to other conventional existing models. In the
previous studies, the gas components are assumed completely
available and the failure propagation from gas system to power
system is not considered [18]. The traditional reliability indices,
e.g. EENS are usually utilized to characterize the reliability
levels of power systems [17]. In the proposed model,
component failures in gas system and the corresponding failure
propagation are considered. The MIENS index and ENGS index
are utilized to quantify the reliabilities of power system and gas
system, respectively. In this case, the limits of EENS and
MIENS indices are identical, which are set as 10000 MWh. The
limit of EGNS index is set as 1.5×107 m3.

Table. III shows the comparison of planning results between
the proposed model and the existing planning models. Firstly, it
can be found that more gas suppliers and power plants are
deployed in the proposed model. Secondly, both the installation
of power plants and gas suppliers are brought forward in the
proposed model. This is mainly because gas system
uncertainties and failure propagation are not considered in the

conventional models and deployment of candidate elements
only needs to meet the forecasted loads.

TABLE ⅠII
INSTALLATION YEAR OF CANDIDATE ELEMENTS FOR DIFFERENT MODELS

Candidate
units

Proposed
model

Existing
model

Candidate gas
suppliers

Proposed
model

Existing
model

ES1 - - GS1 1 -
ES2 - - GS2 - -
ES3 3 2 GS3 7 -
ES4 - - GS4 - -
ES5 5 7 GS5 3 7
ES6 1 6 - - -

Based on the determined candidate element installation in
Table III, the reliabilities of IEGSs at different years are
evaluated considering gas component failures and failure
propagation. Fig. 5 shows the reliability evaluation results of
the proposed model and the existing planning model. Firstly, it
can be found that the neglect of gas component failures in the
existing model may lead to over-optimistic planning results,
which cannot guarantee the reliable operation of NGS. It can be
found that the maximum value of ENGS of the existing model
is 4.25×107 m3, which is over 4 times than ENGS requirements.
In contrast, the ENGS values in the proposed model are all
smaller than ENGS requirements. The analysis results indicate
that the reliability requirements of NGS cannot be achieved in
the existing model when considering component failures.

Considering the cross-sectorial failure propagation,
unreasonable gas supplier plans in the existing model also make
the deployment of power plants cannot satisfy reliability
requirements. As illustrated in Fig. 5, the EENS values
calculated in the existing model increase rapidly from year 2 to
year 10, which are all larger than reliability requirements. On
the contrary, the maximum value of MIENS in the proposed
model is only 9290.23 MWh, which is smaller than reliability
requirements. The reliability analysis results further
demonstrate that the proposed model can plan reasonable
reserve to guarantee the reliability levels of IEGSs.

Fig. 5 Comparisons of reliability indices in different models considering
cross-sectorial failure propagation

The total planning costs of different models are also
compared in Table IV. At the end of the planning horizon, the
investment costs of the proposed model can be 5.76×108

$ (much higher than that in the existing model) since more gas
suppliers are deployed. Nevertheless, the operation costs in the
proposed model are relatively smaller due to the lower
operation costs of new power plants and gas suppliers. In
specific, the operation costs of the proposed model are
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1.617×108 $, which is 0.90 times those of the existing model.
Despite the investment cost saving in the previous model with
fewer gas supplier construction, the neglect of gas
contingencies can lead to more energy curtailment costs. The
unserved energy costs of the previous model are nearly 5 times
those of the proposed model. Synthesizing the investment costs,
operation costs and unserved energy costs, the total planning
costs of the proposed model can save 2.23 ×108 $ costs. The
analysis results demonstrate that the proposed model can
realize the coordination between economy and reliability.

TABLE IV
OPERATION SCHEDULING RESULTS OF DIFFERENT MODELS

Cost (×108 $) Existing model Proposed model

Investment costs
Gas suppliers 1.504 5.524
Power plants 0.236 0.231

Operation costs 1.783 1.617
Unserved energy costs 6.805 0.734

Total co-optimization costs of IEGSs 10.33 8.105

In order to demonstrate the effectiveness of the second-order
cone relaxation technique for convexifying the gas flow model,
another widely-used linearization technique, i.e. piecewise
linearization method is introduced in this paper as a
comparative method to solve the proposed model. The total
optimal objective calculated by the piecewise linearization
method is 8.112×108 $, with only 0.08% difference from the
objective value obtained by the second-order cone relaxation
method. The difference of pipeline flows between these two
methods at different states of year 10 is calculated, as illustrated
in Fig. 6, whose largest value is smaller than 2%. With regard to
computation efficiency, the computation time of the MCE
method is 1101.89 s, which is 0.48 times that of the piecewise
linearization technique.

Fig. 6 Difference of pipeline flows at different states of year 10 between
second-order cone relaxation and piecewise linearization methods

Moreover, the second-order cone relaxation technique has
been widely used in the expansion and optimization of gas
systems [18, 37, 43], whose optimality gap and efficiency have
also been explained in [37]. By potentially modifying the gas
components in Belgium gas network topology, different test
systems are developed in [37] to compare the optimal objective
value, optimality gap and the efficiency between different
methods. The analysis results in reference [37] show that the
second-order cone relaxation technique can derive high-quality
solutions compared to other methods. Besides, the optimality
gaps of the second-order cone relaxation technique are

provably tight, which can also lead to global optimal solutions
in some cases. Furthermore, the computation efficiency of the
second-order cone relaxation technique is much higher than
other methods.

B. Sensitivity analysis of reliability requirements on planning
results

In this case, the impacts of reliability requirements EGNSlimit

and MIENSlimit on the reserve planning results of IEGSs are
analyzed. When EGNSlimit changes from 0.6×107 m3 to 2.7×107

m3 and MIENSlimit changes from 4000 MWh to 12000 MWh,
the variation of deployed energy reserve and the corresponding
planning costs are analyzed.

With the change of reliability requirements in both NGS and
EPS, the total gas reserve and electric reserve at the end of the
planning horizon are given in Fig. 7 and Fig. 8, respectively.
With regard to NGS, we can find that the deployed gas reserve
increases with the decrease of EGNSlimit values. As shown in
Fig. 7, the deployed gas reserve decreases from 1.35×107 m3 to
0.95×107 m3 when EGNSlimit changes from 0.9×107 m3 to
2.1×107 m3. In contrast, the variation of reliability requirements
in the power system has no impact on the gas reserve planning
results. Hence, the expansion planning of gas reserve mainly
depends on EGNS requirements due to the unidirectional
energy interaction between NGS and EPS through GPPs.

Fig. 7 Total deployed gas reserve with varyingMIENS and EGNS limits
Regarding EPS, the planning results of electric reserve are

simultaneously affected by the change of reliability
requirements in NGS and EPS. Firstly, it can be noted that the
reduction of MIENSlimit can increase the deployment of electric
reserve in EPS. Moreover, we can find that the increase of
reliability requirements in NGS can reduce the deployment of
power units in EPS. This is mainly because that the decrease of
EGNSlimit can reduce the probability of gas interruption to GPPs
in contingency states. Due to the adequacy of gas fuels, the
GPPs need not reduce their power output during contingencies.
Considering that, the less electric reserve is required to
guarantee the reliability level of EPS. The simulation results
also indicate that we can improve the reliability of EPS by
simultaneously optimizing the energy resources in both
systems.
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Fig. 8 Total deployed electric reserve with varying MIENS and EGNS limits

C. The impacts of optimism values on planning results
The impacts of optimism values on investment decisions of

IEGSs are shown in Table V and Table VI. Three scenarios are
considered: S1 is the based case where the optimism values are
set as 0.5 in accordance with the previous studies. The
optimism values of S2 and S3 are set as 0.2 and 0.8,
respectively.

TABLE V
INSTALLATION YEAR OF CANDIDATE UNITS FOR DIFFERENT OPTIMISM VALUES

Candidate power units S1: 0.5 S2: 0.2 S3: 0.8
ES1 - - -
ES2 - - -
ES3 3 1 4
ES4 - 6 -
ES5 5 9 9
ES6 1 1 1

TABLE VI
INSTALLATION YEAR OF CANDIDATE GAS SUPPLIERS FOR DIFFERENT OPTIMISM

VALUES

Candidate gas suppliers S1: 0.5 S2: 0.2 S3: 0.8
GS1 1 1 -
GS2 - 1 3
GS3 7 6 6
GS4 - 9 -
GS5 3 0 -

In conclusion, the increase of optimism values can decrease
the allocation of energy production components by system
planners. For example, the system planners tend to allocate the
candidate components more conservatively if they are not very
optimistic (with small optimism values in S2). The installation
of power units and gas suppliers will be brought forward and
more energy reserve will be allocated. Under this circumstance,
more costs will be required to ensure the higher reliability of
IEGSs. In contrast, the system planners will be more likely to
postpone and reduce the allocation of production components if
they are more optimistic (with small optimism values in S3).
Accordingly, the costs of reserve expansion will be smaller and
the system reliability level is relatively lower. The simulation
results further demonstrate that the intermediate optimism
values can realize the coordination between costs and
reliability.

D. Coordination analysis between P2G facilities and gas
suppliers

In this case, the allocation of P2G facilities and gas suppliers
are coordinated for the reserve expansion of IEGSs. Four
candidate P2G facilities are planned together with gas suppliers,
whose data are shown in Table VII [44]. The conversion
coefficient of P2G facilities is set as 50 m3/MW [45].
Considering different costs of power generation in EPS, two
scenarios are introduced. Scenario I is the base scenario where
the operating and investment costs of power units are identical
to those in Case A. In scenario II, the corresponding costs are
set as 80% of those in scenario I.

TABLE VII
DATA OF CANDIDATE P2G FACILITIES

Gas
suppliers

Gas
Node

Electric
node

Capacity
(104m3)

Investment cost
($/m3)

P2G-1 4 4 0.1 10000
P2G-2 4 9 0.08 9500
P2G-3 4 14 0.08 10500
P2G-4 4 20 0.1 10000

Table VII shows the planning results of candidate
components for different scenarios. Firstly, it can be found that
the installation of gas suppliers is appreciated in scenario I.
With the decrease of power generation costs in scenario II, P2G
facilities will be installed to satisfy the gas demand in IEGSs.
Besides, more power units are planned in scenario II due to the
installation of P2G facilities. The study results show that the
P2G facilities tend to be installed for scenarios where the
average power generation costs are relatively lower, e.g. power
systems with a high proportion of renewable energy. On the
contrary, the investment of P2G facilities will increase the
installation of high-cost power units, which can be more
expansive than the investment of gas suppliers.

TABLE VIII
INSTALLATION YEAR OF CANDIDATE ELEMENTS FOR DIFFERENT SCENARIOS

Candidate
units

Scenario
I

Scenario
II

Candidate gas
elements

Scenario
I

Scenario
II

ES1 - 10 GS1 1 7
ES2 - - GS2 - 1
ES3 3 2 GS3 7 3
ES4 - 1 GS4 - -
ES5 5 6 GS5 3 -
ES6 1 3 P2G-1 - 2

- - - P2G-2 - 2
- - - P2G-3 - -
- - - P2G-4 - -

VII. CONCLUSION

Considering the impacts of cross-sectorial failure
propagation, a multifactor-influenced reliability-constrained
reserve expansion is proposed to determine the allocation of
energy production components. In the proposed model, the
novel multifactor-influenced reliability indices are defined
considering the synthetic effects of multiple uncertainties,
including failure propagation, load uncertainties and
component failures. The fuzzy set theory is combined with
conventional methods to reduce the number of system
contingency states for computation efficiency improvement.
Case studies demonstrate that the proposed model can realize
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the coordination between economy and reliability compared to
the previous studies. Moreover, the simulation results indicate
that we can improve the reliability of EPS by simultaneously
optimizing the energy resources in both systems. Furthermore,
the robustness of the proposed model can be guaranteed by
setting a smaller optimism value. Hence, the proposed model in
this paper can provide useful references for system planners to
constitute reasonable reserve expansion plans to guarantee the
reliability levels of IEGSs.
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