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Preface 

The large-scale consumption of fossil fuels has brought about numerous 

issues, e.g. environmental pollution and climate change, which call for 

technological innovations to improve energy efficiency and reduce harm-

ful emissions. Nowadays, the energy systems are undergoing a pivotal 

transition, especially the increasing interactions across multiple energy car-

riers. Through the coordination between various energy subsystems, more 

clean, efficient, and sustainable energy can be supplied to consumers. The 

multi-energy systems, which couple gas systems, power systems, and heat-

ing systems through coupled components, e.g., gas-fired power plants and 

combined heat and power (CHP) plants, have gained rapid technological 

development globally.  

Despite the high efficiency and sustainability of multi-energy systems in 

energy production and transportation, the interplay between different ener-

gy subsystems can introduce new risk factors, i.e. cross-sectorial failure 

propagation. For example, gas source outages or pipeline contingencies 

occurring in NGS may cause the interruption of gas supply to gas-fired 

power plants. The power plants that cannot obtain sufficient gas will dra-

matically reduce their power output, jeopardizing the risk to the power sys-

tem. The practical blackouts in Texas, USA on 16th February 2021 resulted 

from such a failure propagation issue. Due to unexpected cold weather, the 

production decline of gas sources and pipeline shutdowns significantly re-

duced the transportation of gas from production areas to gas-fired power 

plants. Simultaneously, numerous electric-driven gas compressors failed 

due to the interruption of the power supply. In addition, other blackouts 

around the world, such as the massive outages in Taiwan, China on 15th 

August 2017 and the outages in the Southwestern United States in Febru-

ary 2011, are all correlated to the failure propagation features. Therefore, 

unsuccessfully dealing with the risk issues of failure propagation will 

threaten the reliable and secure operation of the whole system, further hin-

dering the development of multi-energy systems.  

This book focuses on the risk modeling, analysis, and control of multi-

energy systems considering cross-sectorial failure propagation. Proposed 
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models and methods have been addressed with engineering practice. This 

is achieved by providing an in-depth study on the modeling of system 

physics and reliabilities in both long-term and short-term phases. Different 

models and methods to evaluate the risk of multi-energy systems consider-

ing various disturbances, e.g., component failures, load uncertainties, and 

extreme weather, are studied in detail. Moreover, different risk control 

methods, including long-term capacity planning and integrated demand re-

sponse, of multi-energy systems are also analyzed in this book, which is 

particularly suited for the readers who are interested in risk management of 

systems. The book can benefit researchers, engineers, and graduate stu-

dents in the fields of electrical and electronic engineering, energy engi-

neering, complex network and control engineering, etc. 

There are ten chapters in this book.  

➢ Chapter 1 introduces the development and risk issues of multi-

energy systems. The typical risk evaluation techniques and the 

challenges in the risk assessment of multi-energy systems are also 

illustrated in this chapter.  

➢ Chapter 2 proposes a generalized framework for long-term reliabil-

ity modeling and evaluation of integrated electricity and gas sys-

tems utilizing the universal generating function technique. The 

analysis mentality of “individual components, gas system, coupling 

components, and power system” is developed. Nodal risk indices 

are defined to quantify the regional risk levels of power and gas 

systems. 

➢ Chapter 3 proposes a short-term risk evaluation technique for inte-

grated electricity and gas systems considering gas flow dynamics. 

Firstly, the short-term risk models of gas sources and gas-fired 

units are developed. Then, the multi-stage contingency manage-

ment scheme is proposed, where gas flow dynamics are analyzed 

for determining the time-varying load curtailments of electricity 

and gas. Moreover, a time-sequential Monte Carlo simulation tech-

nique is developed with the finite-difference scheme to tackle the 

gas flow dynamics during the short-term risk evaluation.  

➢ Chapter 4 is devoted to operational risk evaluation of integrated 

electricity and gas systems considering the impacts of cascading ef-

fects. Considering different dynamic behaviors between the power 

system and gas system, a dynamic cascading effect analysis model 

is proposed to describe the temporal and spatial process of failure 
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propagation. Based on the Monte Carlo simulation technique, the 

bi-directional failure propagation is incorporated into the opera-

tional system risk evaluation framework. 

➢ Chapter 5 introduces the definitions and risk modeling methods of 

two-interdependent-performance multi-state systems (TIP-MSS) 

and their application to CHP units. An object, i.e., the performance 

trade-off curve, is utilized to represent the performance rates. The 

universal generating function method is extended to represent the 

performance distribution of a TIP-MSS. Moreover, different com-

position operators are defined for analyzing the reliability of TIP-

MSS with parallel/series structures. The availability criterion based 

on the TIP-UGF method is also proposed. 

➢ Chapter 6 proposes the operational reliability assessment method of 

the integrated electricity and heating systems with CHP units. The 

scenario-based combined heat and power dispatch (CHPD) model 

is proposed to calculate the nodal reliability indices. Several tech-

niques are utilized to improve the computation efficiency of the re-

liability assessment technique. First, the traditional universal gen-

erating function method is extended for combining the coupling 

device states and consequently reducing the number of scenarios 

that need to be considered. Second, a hydraulic-thermal decomposi-

tion technique is proposed to decompose the CHPD model into two 

linear programming models that can be iteratively solved. 

➢ Chapter 7 studies the operational risk of multi-energy customers 

considering service-based self-scheduling. An optimal self-

scheduling model for multi-energy customers is developed with the 

consideration of chronological service curtailment, service shifting, 

and possible failures during service shifting. In the optimal self-

scheduling model, the costs of service curtailment and shifting are 

formulated based on the proposed evaluation method. The time-

sequential Monte Carlo simulation approach is applied to model the 

chronological volatilities of multi-energy demands over the entire 

study period. Taking account of the possible scenarios, the quanti-

tative risk indices of the multi-energy customers are obtained.  

➢ Chapter 8 is devoted to the risk analysis and quantification of mul-

ti-energy systems under windstorms. The multi-phase performance 

curve is utilized to describe the response behavior of multi-energy 

systems at different phases under the impacts of windstorms. Be-

sides, a service-based optimal energy flow model is developed to 

minimize the consequences caused by windstorms through coordi-

nation among different energy subsystems. Furthermore, nodal risk 
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metrics for different energy carriers are proposed to quantify the 

risk performance. 

➢ Chapter 9 proposes the long-term reserve expansion model of inte-

grated electricity and gas systems for risk mitigation. The novel 

multifactor-influenced reliability indices are defined considering 

the synthetic effects of multiple uncertainties, including failure 

propagation, load uncertainties, and generation failures. In the reli-

ability index formulation, the contribution of failure propagation on 

system reliability is analytically expressed. To effectively solve the 

planning model, the decomposition approach is introduced to de-

compose the original problem into a master problem and two corre-

lated reliability sub-problems.  

➢ Chapter 10 presents the outlook of incorporating integrated demand 

response in risk control of multi-energy systems. Taking industrial 

loads as an example, integrated flexibility is defined and character-

ized by the feasible region. The integrated model based on the en-

ergy hub is proposed to couple the material flows in the industry 

load and the energy flows in the distributed energy systems. Incor-

porating the above method with the mathematical expression of the 

integrated flexibility, the integrated flexible region can be calculat-

ed by the poly-topic projection. On this basis, the process for in-

corporating the integrated flexible region of industrial loads in the 

risk control of multi-energy systems is proposed.  
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1 Multi-energy systems and risk evaluation 

1.1 Descriptions of multi-energy systems  

Energy is the foundation and engine for the progress of human society. Faced 

with the challenges of global climate change and environmental issues, low-

carbon and high-efficiency have become the most important topics in nowadays 

energy utilization [1]. Coordinately using multiple energies, including electricity, 

gas, and heating, provides a promising pathway toward a low-carbon energy sys-

tem. Under this circumstance, the concept of multi-energy systems (MESs) is 

emerging and has become one of the most discussed topics recently. MESs aim to 

coordinate multiple energies in the production, transportation, and consuming pro-

cesses in terms of operation, planning, etc.  

According to different geographic scales, the MESs can be divided into two 

parts: the generation & transmission side and the distribution side, as illustrated in 

Fig 1.1. On the generation & transmission side, the electricity and gas transmis-

sion systems are linked by the gas-fired units (GFU), which gives birth to the con-

cept of integrated electricity and gas systems (IEGS). Compared with the tradi-

tional coal-fired units, the GFU is cleaner with less harmful emissions. In addition, 

it is more flexible in assisting the peak regulation of the power systems. Therefore, 

natural gas has become one of the most appealing fossil fuels to generate electrici-

ty in many countries and regions. For example, till Jan 2021, the gas consumption 

from the electric power sector has increased by 22.03% in the USA in the last 

three years [2]. The electricity generated by natural gas takes 38.42 % of all the 

electricity generation, which is the highest among all the fuels. In China, despite 

the high spot price for natural gas, the electricity generation from gas reaches 

215.5 TWh, which is increased by 6.1% [3]. Apart from the GFU, the main com-

ponents in the IEGS also include traditional fossil generating units, renewable 

generating units, high-voltage electricity transmission lines, gas pipelines, gas 

compressors, etc. 

On the distribution side, the distributed energy systems consume the electricity 

and gas from the IEGS on the transmission side and satisfy the electricity, heating, 

and cooling demands of end-users. The energies are delivered by the integrated 

electricity and heating systems (IEHS), consisting of electricity distribution sys-

tems, and district pipeline systems. The components mainly include distributed re-

newable generations, micro turbines, combined heat and power (CHP) units, elec-

tric and gas boilers, heat pumps, absorption chillers, etc. It is reported in China 

that the centralized heat supplying area reaches about 9 trillion m2, where the CHP 

is responsible for 51 % of the total area [4]. The primal fuel they consumed is coal 

now and is currently under a transition toward electric heating and gas heating. 

Therefore, the tight integration of multiple energies in different spatial scales is 

one of the most important features of future energy systems. 
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Fig. 1.1 Structure of the multi-energy systems 

1.2 Risk issues of multi-energy systems  

Despite the high efficiency and sustainability of MESs in energy generation, 

transmission, storage, and use, the interplay between different energy subsystems 

can bring about diverse emerging risk issues. On the one hand, as the scale of 

MESs expands, the external disturbances originating from extreme weather, cyber 

failures, intentional attacks, and policy uncertainties can increase significantly. On 

the other hand, random failures occurring in one energy system may propagate to 

the other system due to energy interactions, threatening the reliable operation of 

the whole system. Considering the impacts of various external disturbances and 

internal features of failure propagation, several blackouts have happened during 

the past decades, as summarized in Table 1.1. This section includes review related 

to the analysis of Texas blackout from the perspective of multi-energy coupling by 

[5].  

Taking the Texas blackout as an example, the impacts of failure propagation on 

the reliability of MESs are illustrated here. In Texas, natural gas ranks first in the 

primary energy types for electricity generation. GFUs supplied more than half the 

electricity in Texas in 2020 [6], resulting in the tight interdependency between 

power system and gas system. During the extreme cold weather in February 2021, 

the outputs of nearly all types of power plants have suffered a dramatic decline, as 

shown in Fig 1.2, mounting at 48.6% with respect to the total installed capacity 

[7]. It should be illustrated that Fig. 1.2 is repainted according to the data and fig-
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ures in [7]. Therefore, the outage capacity of gas-fired plants was approximately 

26.5GW, accounting for 51% of the maximum generation out of all generation 

types [7]. Large-scale GFU outages mainly resulted from the shortage supply of 

natural gas, and the reasons can be summarized as follows: 

Table 1.1 Practical blackouts in the multi-energy systems around the world 

Time Location Cause Consequence 

Sep 

2011 
USA 

Failure of transformer substation, 

and cascading failure of GFUs 

Interruption of electricity supply for 7 

million people [8] 

Sep 

2016 
Australia 

Volatility of the gas market, large 

penetration of wind generating units 

Interruption of electricity supply for 

50 hours [9] 

Aug 

2017 

Taiwan, 

China 

Gas supply interruption due to the 

misoperation of GFUs 

4 GW interruption of electricity sup-

ply [10] 

Aug 

2018 
UK 

Shutdown of little Barford GFUs, 

wind turbine off-grid 

Interruption of electricity supply for 1 

million people for 1.5 hours [11] 

Feb 

2021 

Texas, 

US 
Freezing of gas well valves 

20 GW electric load shedding, influ-

ence on over 4.8 million people [12] 

May 

2021 

Taiwan, 

China 
Shutdown of Xingda GFUs 

Rolling blackouts for over 4 million 

people [13] 

 

  
Fig. 1.2 Generation capacity losses for different generation types  

 

The absence of anti-freezing measures for natural gas production and 

transportation facilities. Unlike the colder northern regions of the U.S., natural 

gas production and refinement facilities located in Texas, including boilers, tur-

bines, and other auxiliary equipment, are directly exposed to the ambient envi-

ronment. This design could effectively prevent these pieces of equipment from 

overheating due to fatigue during the hot summer [14]. Nevertheless, this design 
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routine can lead to devoid freeze protections that make it difficult for natural gas 

systems to withstand extremely cold temperatures outside. Suffering from the ex-

treme freezings combined with the deficient anti-freezing means, the normal sup-

ply of natural gas was largely threatened [14]. Firstly, frigid ambient temperature 

possibly caused the congestion of the gas flow for several reasons during all pro-

cesses of gas extraction, refinement, and transportation [15]: i) water mixed with 

raw gas frozen in the pipeline and valve tree atop the wellhead. ii) water frozen in 

the scrubber/separator which splits the product streams. iii) natural gas liquids 

(NGLs) or hydrates condensed before the gas can exit the gathering system. Be-

yond the congestion of gas flow, malfunctions of some field equipment rooted in 

the frigid weather are also reasons for the interrupted supply of natural gas [16].  

The insufficient capacity of gas storage and gas reserve. Enough and relia-

ble natural gas storage is vital to both natural gas systems and power systems un-

der contingency states. There are about 30 active natural gas underground storage 

facilities within the border of Texas[17]. The average daily gas withdrawal of un-

derground gas storage facilities in seven south-central U.S. states, including Tex-

as, reached a record high (22.3 billion cubic feet [18]) during the whole February. 

The average daily withdrawal of natural gas at Texas underground storage is about 

7.8 billion cubic feet on February 19th, 2021[18]. Even so, this was insufficient to 

compensate for the 10 billion cubic feet gap due to the reduction of natural gas 

production. According to the calorific conversion formula [19], this gas shortfall is 

equivalent to a power shortfall of about 1430 GWh (assuming that all electricity is 

generated by high-efficiency combined-cycle gas-fired units). 

The neglect of failure propagation from gas systems to power systems. 

With the significant development of renewable energy capacity in Texas and the 

increasing frequency of extreme weather events, the operation uncertainties in the 

power system are prominent. ERCOT usually evaluates the adequacy of system 

capacity and arranges reserve resources every quarter [20]. However, due to the 

separate operation and management of power systems and natural gas systems in 

Texas, the reliable gas supply to GFUs is out of the jurisdiction of ERCOT. In this 

case, ERCOT lacks a coordination mechanism with the natural gas system opera-

tor. Besides, ERCOT cannot acquire timely information about the operation condi-

tions of natural gas systems. Hence, the adequacy assessment of the power system 

capacity is usually based on the complete reliability of the primary energy supply, 

e.g. natural gas supply. Consequently, the impact of extreme weather on the elec-

tricity supply is underestimated [20].  

Based on the descriptions of practical blackouts around the world, it is essential 

to evaluate and control the risks of MESs to guarantee the reliable operation of 

multi-energy systems.  
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1.3 Challenges in risk modeling and analysis of multi-energy sys-

tems 

As a section of MES, the risk modeling of power systems has been studied ex-

tensively in recent years [21, 22]. The multi-state system model is a widely-used 

technique to evaluate the risk levels of power system [23]. In specific, the compo-

nents (e.g. generating units) in power system can have multiple states, such as 

complete failure, partial failure and well-being [24]. For different states, the per-

formance rates of components, e.g. generating capacity, can vary due to various 

extents of failure conditions. Hence, the power system composed of numerous 

multi-state components can certainly be a multi-state system. Based on the multi-

state system theory, the risk models of power system have been proposed to de-

scribe its ability to provide consumers with electricity within accepted standards 

[25].  

In the traditional multi-state model for power systems, the performance of 

components and system can be characterized by one single measure, i.e. electrici-

ty. Nevertheless, the MESs can simultaneously have different types of perfor-

mances, including power, gas and heating. Besides, there exists interdependence 

between different performances in MESs [26]. Taking the CHP unit as an exam-

ple, the power and heating outputs are usually constrained by a two-dimension 

feasible operation region [26]. Considering the dependence between different per-

formance types, the MESs can be abstracted into multi-state multi-performance 

systems (MPMMSS), as shown in Fig. 1.3. Compared to traditional multi-state 

systems, the main feature of MPMMSS is that the state of system and components 

has different types of performance and can be represented by a performance vec-

tor. Hence, the traditional multi-state model ought to be extended to multi-

dimensional space.  

 
Fig. 1.3 Multi-state multi-performance features of MESs 

The existing risk modeling and evaluation methods for multi-state systems 

mainly include two categories, i.e. analytical techniques and simulation methods. 

Analytical techniques mainly represent multi-state systems in an analytical way 

and therefore the risk indices could be evaluated using mathematical solutions 

[27]. The analytical techniques can effectively help the deep understanding of risk 
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evaluation and modeling for multi-state systems. Several analytical techniques 

have been proposed to evaluate the risk of multi-state systems, including the state 

enumeration method [28], failure tree method [29], and universal generating func-

tion (UGF) technique [30].  

Compared with the analytical method, the simulation approach is more flexible 

by simulating the operating state of energy system, which is more efficient and ef-

fective in the risk evaluation [31]. On the one hand, with the development of sys-

tem scale, the number of components can be increased. As a result, the number of 

the possible system states, as a state combination of components state, grows ex-

ponentially [32]. If we still apply the analytical-based approach, the computation 

complexity and the computation time will also grow exponentially. In contrast, the 

simulation approach is less sensitive to the system scale. It can conveniently 

achieve a balance between the accuracy and the computation time by 

preference[33]. Several simulation approaches have been proposed to analyze the 

risk of multi-state systems, including non-sequential Monte Carlo simulation[34], 

pseudo-sequential Monte Carlo simulation[35] and time-sequential Monte Carlo 

simulation[36].  

Though the risk modeling techniques for power systems have been well devel-

oped, the multi-performance features of MESs can make the traditional modeling 

and evaluation approaches not applicable. Therefore, a generalized modeling ap-

proach needs to be developed for analyzing the risk levels of MPMMSS and com-

ponents considering multi-performance features. Moreover, the basic definition of 

system risk should be given to evaluate the risk features of MPMMSS for different 

performances, which are of great importance to further studies of MES risk.  

Besides multi-performance features, the significant differences between power 

systems and MESs from transmission sides to demand sides can challenge the tra-

ditional risk analysis techniques. The major challenges can be summarized as fol-

lows:   

1) Energy transmission dynamics: Owing to the distinguishing physical char-

acteristics among electricity, gas, and heating systems, there exist a few main ob-

stacles to directly applying the traditional risk evaluation technique to the MESs. 

On the one hand, different from the traditional electricity system which is de-

scribed by algebraic equations during the operational phase, the physical charac-

teristics of gas flow and heating flow are described by the partial derivative equa-

tions [37]. That means the time constant and dynamic response of the gas systems 

are larger and slower. When there is a sudden change in the system state, e.g., a 

failure of a gas well, the transient process can last for hours, which becomes an 

unneglectable factor during the operational risk evaluation [38]. On the other 

hand, the gas flow and heating models have strong nonlinearity and nonconvexi-

ties [39]. The load shedding calculation in the risk evaluation can be difficult and 

time-costly, and not robust in convergence. Considering that, it is not suitable for 

the numerous state simulations during risk evaluation. 

2) Increasing uncertainty categories: The current research mainly focuses on 

studying the impacts of internal uncertainties on the risk of power systems, such as 
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load variation and wind power fluctuation. Considering energy interactions, the 

disruptions occurring in one system can have impacts on the operation of the other 

system, which may further feedback to the original system [40]. Therefore, the 

traditional evaluation models of power systems cannot consider the external un-

certainties, i.e. failure propagation process in the risk analysis of MESs. A com-

prehensive evaluation model needs to be proposed to quantify the multiple uncer-

tainties on the risk levels of MESs.  

3) Multi-energy conversion of demand sides: The integration of multiple en-

ergies on the demand side increases its flexibility. In the traditional electricity sys-

tem, the electric demand can only be satisfied by using electricity. While in the 

MESs, the demands of end-users contain electricity, heating, and cooling simulta-

neously, and are deeply interconnected. For example, the heating demands can ei-

ther be met by using air conditions or electric heat pumps that consume electricity, 

or by using CHPs that consume natural gas. This kind of energy substitution effect 

can bring additional flexibilities to the multi-energy customers in the normal oper-

ation, demand response, or contingency management, as well as uncertainties[41].  

4) Time-varying risk features during operation: The current research on the 

risk evaluation of MESs mainly focuses on the long-term risk mostly. On the one 

hand, the traditional risk model and evaluation method usually consider the 

steady-state probability of components. this method is usually used in the long-

term, e.g., in the planning stage. While in the operational phase, due to the com-

mitment and maintenance of the devices, the steady-state probability-based risk 

model may cause inaccuracies [42]. On the other hand, compared with traditional 

electricity systems, the MESs have distinguished energy flow dynamics and the 

flexibilities on the transmission and demand sides, respectively, which are strong-

ly time-related and have great impacts on the operational phase[38]. Currently, 

this factor has rarely been considered in the risk evaluation of MESs. 

Faced with the existing challenges, it is essential to develop new risk evaluation 

theories and methods for MESs. The proposed method can help system operators 

and planners accurately understand the risk levels of MESs, which can guide the 

formulation of risk control measures.  

1.4 Organization of this book for risk analysis and control of multi-

energy systems 

In order to deal with the challenges of risk modeling and analysis in MESs, the 

organization of this book is shown in Fig.1.4. Firstly, the illustration of MESs and 

the corresponding risk issues is presented in Chapter 1. In this chapter, the re-

search motivation of this book is answered. Moreover, the risk modeling and anal-

ysis of MESs are given in Chapters 2-8 considering multi-performance features 

under multiply uncertainties. In specific, the long-term and short-term risk model-

ing and analysis of IEGS are illustrated in Chapters 2-4 considering faiure propa-

gation. The risk modelling of CHP units and IEHS considering multi-state multi-

performance features are proposed in Chapters 5-6. On this basis, the detailed il-
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lustrations about the risk analysis of MESs considering multi-energy conversion of 

demand sides and the impacts of windstorms are given in Chapters 7 and 8, re-

spectively. Finally, the risk control measures of MESs are presented in Chapters 9-

10, including long-term reserve expansion and integrated demand response.  

 
Fig. 1.4 Organization of this book for risk analysis and control of MESs 
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2  A Framework for Risk Modeling of Integrated 
Electricity and Gas Systems Utilizing Universal 
Generating Function Techniques 

2.1 Introduction 

As illustrated in Chapter 1, the energy interaction can cause failure propagation 

between gas and electricity systems, which can have great impacts on the risk lev-

els of integrated electricity and gas systems (IEGS). In the previous studies, risk 

assessment techniques of power systems have been well developed during the past 

few decades [1, 2]. However, these conventional techniques are more focused on 

studying the risk of the power system itself and usually ignore the coupled rela-

tionship between the power system and NGS. The integration of NGS and power 

system can bring complexities in risk evaluation and management. Firstly, the risk 

and performances of IEGS are affected by the random failures either in NGS or in 

the power system. The NGS contains many different components with various op-

erating characteristics. It is important to develop a risk model of NGS considering 

the stochastic performances of its components and the corresponding operating 

constraints. Moreover, because of the coupled relationship between NGS and the 

power system, the impacts of NGS on the risk of the power system must be mod-

eled in the risk analysis. Additionally, the effects of random failures on the risk of 

the power system can differ at various nodes because of the transmission con-

straints and uneven distributions of generators and demands [3-5]. Nodal risk, 

therefore, has been adopted to evaluate the locational risk performances of the 

power system. When considering the integration of NGS and the power system, 

customers’ nodal reliabilities must be thoroughly analyzed and quantitatively 

evaluated.  

To model the operating characteristics and random failures of components, a 

multi-state system model is used to represent the stochastic performances of IEGS 

[6]. However, with regard to IEGS consisting of numerous components, the num-

ber of system states can be relatively large. Enormous efforts must be spent to de-

velop a stochastic model for IEGS and solve it [7]. It can be a difficult process for 

the state-space diagram building or model construction, even for a relatively small 

IEGS. Hence, the universal generating function (UGF) technique, which has been 

widely used in multi-state system risk and performance evaluation, is adopted in 

this chapter. The proposed technique [6-8], first introduced by Ushakov [7] and 

greatly extended by Lisnianski [6] and Levitin [8], has proved as an effective 

method to evaluate the reliabilities of the power system [9-11]. References [9] and 

[10] have adopted the UGF technique to study the impacts of high wind penetra-

tion on the risk evaluation and management of the power system. In reference 

[11], the UGF technique has also been utilized to evaluate the reliabilities of the 

distributed generation system with different energy sources. The UGF technique 

provides us an effective tool to obtain the performance distribution of the entire 
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system based on the given performance distributions of its elements [9]. Moreo-

ver, it can represent the various risk models of individual components in IEGS and 

describe the coupled relationship between NGS and power system. 

In this chapter, a UGF-based framework is proposed to evaluate the nodal risk 

of IEGS considering the random failures of components, as well as the coupled re-

lationship between NGS and the power system. Firstly, the UGFs for different 

components in NGS are developed to represent their stochastic performances. The 

multi-state model of NGS is obtained by aggregating these UGFs utilizing the 

proposed gas flow calculation (GFC) operator. Moreover, the multi-state model of 

gas injection at each node is converted into the power output models of GPPs, 

which is based on the gas-to-power calculation (GTP) operator. In this manner, the 

impacts of NGS could be incorporated into the risk evaluation of the power sys-

tem. Moreover, to evaluate the locational risk performances of IEGS, nodal risk 

indices for both the NGS and power system are proposed. This chapter includes 

research related to the general framework for risk modeling of IEGS considering 

failure propagation by[12].  

2.3 Risk modeling of the natural gas system 

Reliability analysis of NGS 
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Fig. 2.1 Framework for risk modeling of NGS. 
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According to the coupling features, the risk analysis of NGS is conducted first-

ly, as shown in Fig. 2.1. The multi-state models of key components in NGS, such 

as gas sources, compressors, and gas storages, are developed to represent their 

stochastic performances utilizing the UGF method. The GFC operator is devel-

oped for aggregating these UGFs to obtain the multi-state model of NGS. Using 

this model, the possible gas load curtailment in contingency states can be ob-

tained, with which the nodal risk indices for the NGS are determined. 

2.3.1 Risk model for gas source 

The gas source on one node could consist of multiple gas wells using direction-

al and horizontal drilling technology [13]. Hence, the multi-state model of the gas 

source could be represented by the aggregation of gas wells. Regarding an indi-

vidual gas well, the gas production is affected by many factors, such as geological 

conditions and extraction techniques, etc.  

Generally, the risk model of a gas well can be represented as a two-state model. 

The maximum gas production is zero when the well fails and is max

isW  when the 

well is in operation. Therefore, the corresponding UGF used to represent the risk 

model of gas well s  at node i  is defined as: 

 
max

0( ) isWr Ar Ur

is is isu z p z p z=  +    (2.1) 

where Ar

isp  and Ur

isp  are the availability and unavailability of gas well s  at node i , 

respectively.  

The risk model of the gas source at node i  is composed of several gas-well sub-

systems and can be represented as a multi-state gas source ( MGSi ) using UGF 

equivalent as shown in Fig. 2.2. The parallel operator Ω w
 over UGF representa-

tions of iwn  wells is used to obtain the multi-state model for MGSi : 

The risk model of the gas source at node i  is composed of several gas-well sub-

systems and can be represented as a multi-state gas source ( MGSi ) using UGF 

equivalent. The parallel operator Ω w
 over UGF representations of iwn  wells is 

used to obtain the multi-state model for MGSi : 
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where 
iw

w

lp  and max

, iwi lW  are the probability and maximum gas production of the gas 

source at node i  for the state 
iwl . There are 

iwK  states of the gas source consider-

ing random failures. 

 
Fig. 2.2 Gas source UGF equivalent. 

2.3.2 Risk model for gas compressor 

To maintain the pressures on the pipeline at desired values, the compressor will 

modify the suction pressure or discharge pressure. The compressor ratio ciR  is 

used to represent the compression capability of compressor c  between node i  and 

node j , which is defined as:  

 
j

ci

i

R



=   (2.3) 

where i  and 
j  are the pressures of suction node i  and discharge node j , re-

spectively.  

Generally, the maximum compressor ratio is affected by both characteristics 

and the risk of compressors. Hence, the maximum compressor ratio of compressor 

c  can be viewed as a multi-state model. The corresponding UGF to represent the 

compression capability of compressor c  between node i  and node j  can be de-

fined as a polynomial:  
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K
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i l
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where 
c

c

lp  and max

, cci lR  are the probability and maximum compressor ratio of com-

pressor c  with its inlet at node i  for state cl , respectively, and cK  is the number of 

states.  

2.3.3 Risk model for gas storage 

During operation, the gas storage could adjust the operating status between the 

charge state and discharge state, which can be modeled as a gas supplier or a load. 

The different operating statuses of gas storage could be represented by the signs of 

gas storage output. Generally, due to physical characteristics and random failures, 

the capacity of gas storage could be regarded as a multi-state model, which is de-

fined as the polynomial: 

Gas source at node i
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where 
st

st

lp  and ,max

, st

st

i lW  are the probability and capacity of gas storage st  at node i  

for state 
stl , respectively. There are 

stK  states of gas storage.  

As significant gas reserves, the change of capacity for gas storage will have an 

influence on the risk of NGS. To measure the average capacity of gas storage in 

NGS, the indicator 
stC  is introduced in this chapter. 

stC  is a weighted average 

value of gas storage capacity at each node over gas loads, which can be represent-

ed as: 
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where iLW  is the gas load in the normal state at node i  and N  represents the num-

ber of gas nodes in NGS. 

2.3.4 Risk analysis of natural gas system 

Failures of gas sources and variations of gas storage output may result in a 

change in gas supply to GPPs. After evaluating the ( )w

iu z , ( )c

iu z  and ( )st

iu z , the 

multi-state model of NGS could be obtained by GFC operator Ω GFC
 to calculate 

the gas load curtailment at each node.  
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where 
G

GLC

lp  and 
, Gi lGLC  are the probability and the gas load curtailment at node 

i  for state Gl , respectively. There are GK  states of gas load curtailment at node i .  

Hence, the UGF representing the gas injection at node i  for different states 

compared to the load iLW  in the normal state can be obtained as: 
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where 
, Gi lGS  refers to gas injection at node i  for state 

Gl .  

The GFC operator used in (2.7) is defined as an optimization model to deter-

mine the gas load curtailment at node i  for state 
Gl , which is described in (2.9)-

(2.19). The objective function is to minimize the total gas load curtailment for 

state 
Gl : 

 
,

1
G G

N

l i l

i

Min f GLC
=

=   (2.9) 

Subject to the following constraints: 

Gas flow through pipelines: The gas flow 
, Gij lf  through the pipeline from node 

i  to node j  for state Gl  can be calculated according to Weymouth equation [14]. 

The gas flow is a quadratic function of the pressures on both sides of nodes, which 

is expressed as: 

 
2 2 2 2

, , , , ,sgn( , ) ( )
G G G G Gi l j l ij l ij i l j lf M   = −   (2.10) 

where
, ,sgn( , )=1

G Gi l j l  if
2 2

, ,( ) 0
G Gi l j l −  or

, ,sgn( , )
G Gi l j l  = 1− if 

2 2

, ,( ) 0
G Gi l j l −  . 

ijM  refers to the constant pipeline flow coefficient, which is re-

lated to the diameter of the pipeline, temperature, and gas pressure. 
, Gi l  and 

, Gj l  

are the pressures of node i  and node j  for state Gl , respectively.  

The pressure levels at each node are bounded by:  

 
min max

, Gi i l i      (2.11) 

where min

i  and max

i  represent the minimum and maximum limits of the pressure 

at node i , respectively. 

The gas flow through each pipeline is restricted by pipeline capacity:  

 
max

, Gij l ijf f   (2.12) 

where max

ijf  represents the maximum gas flow of the pipeline between node i  to 

node j .  

Compressor model: In general, the work function of the compressor is complex 

and closely associated with the compressor type. In this chapter, we use centrifu-

gal compressors, whose key characteristic is that horsepower needs to be con-

sumed to drive the turbine [14]. The horsepower consumption 
, Gcij lH  of compres-

sor c  between node i  and node j  for state Gl  is a function of the gas flow 
, Gij lf  

through the compressor, which can be expressed as: 

 
( )1 1/

, , ,( 1)c

G G G

z

cij l ij ij l i lH B f R
 −

= −   (2.13) 

where 
ijB  is the constant horsepower consumption coefficient, which depends on 

the heat ratio, suction temperature and efficiency of a compressor. 
, Gi lR  represents 
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the compressor ratio for state 
Gl . 

cz  and   refer to gas compressibility factor and 

specific heat ratio, respectively. Hence, the amount of gas , Gcij l  supplied to the 

turbine in compressor c  for state 
Gl  can be calculated via horsepower consumption 

, Gcij lH . For simplicity, , Gcij l  is a quadratic function of 
, Gcij lH , which can be calcu-

lated as: 

 
2

, , ,G c c G c Gcij l T T cij l T cij lH H   = + +   (2.14) 

where 
cT , 

cT  and 
cT  are compressor gas consumption coefficients. 

The compressor ratio of each compressor is bounded by:  

 
max

, ,G Gi l i lR R   (2.15) 

where max

, Gi lR  represents the maximum compressor ratio of the compressor with its 

inlet at node i  for state 
Gl .  

Gas flow balance on each node: Similar to the power system, the NGS also 

needs to follow the nodal supply-demand balance. The amount of the gas leaving 

node i  for state 
Gl  is equal to that of gas injected at that node. The gas flow equa-

tion at node i  can be given by: 

 
, , , , ,

1 1
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N N
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i l iL i l i l cij l ij l

j j

W W GLC W f
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where 
, Gi lW  is the production of gas source and 

, G

st

i lW  is the output of gas storage 

at node i  for state Gl . 

The production of each gas source is restricted by its capacity, which can be 

modeled as: 

 max

, ,0
G Gi l i lW W   (2.17) 

where max

, Gi lW  represent the maximum production of the gas source at node i  for 

state Gl .  

The output of each gas storage is restricted by the maximum level:  

 ,max

, ,G G

st st

i l i lW W  (2.18) 

where ,max

, G

st

i lW  represents the maximum output of gas storage at node i  for state Gl . 

The gas load curtailment at each node is bounded by:  

 min max

, , ,G G Gi l i l i lGLC GLC GLC   (2.19) 

where min

, Gi lGLC  and max

, Gi lGLC  represent the minimum and maximum limits of gas 

load curtailment at node i  for state Gl , respectively. 
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2.3.5 Risk indices for gas system 

In a composite system, many indices are defined to evaluate the risk of the en-

ergy system, including the expected values and nodal reliabilities. In this chapter, 

the loss of gas load probability ( iLOGLP ) and the expected gas not supplied 

(
iEGNS ) are introduced to evaluate the nodal risk of NGS. 

After calculating the 
G

GLC

lp  and , Gi lGLC  at node i  for each state from (2.7), the 

risk indices iLOGLP  and iEGNS  at node i  can be calculated as:  

 ( ),
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G G

G

K
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i l i l
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where ( )l True 1  and ( )l False 0 . 
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2.4 Risk modeling of power system considering the impacts of the 

gas system 

Reliability analysis of power system 
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Fig. 2.3 Framework for risk modeling of the power system. 

 

Based on the multi-state model of NGS in (2.7), the framework for risk analysis 

of the power system considering the impacts of NGS is shown in Fig. 2.3. The 

gas-to-power calculation (GTP) operator is first developed to convert the multi-

state model of gas injection at each node to the power output models of GPPs in 

the power system. Moreover, the optimal power flow (OPF) composition operator 

is developed to aggregate the multi-state models for GPPs and other generators 

(such as coal-fired generators) to obtain the multi-state model for the power sys-

tem. Based on this, possible electric load curtailment in contingency states can be 

obtained, with which the nodal risk indices for the power system are evaluated. 

2.4.1 Risk model for GPP based on GTP operator 

The coupled relationship between the power system and NGS could be de-

scribed by the model of GPPs. Each GPP acts as an energy converter, which is 
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simultaneously connected to the load node i  in the NGS and generation node m  in 

the power system. According to [14], there is a conversion relationship between 

the output of GPPs and the gas injection at corresponding nodes. Hence, the power 

output of a GPP at electric node m  could be obtained by the GTP operator 
GTP  

after evaluating the (z)GS

iu : 
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where 
mg

GP

lp  and 
mglP  are the probability and power output of a GPP at node m  for 

state 
mgl , respectively. There are 

mgK  states of a GPP considering the impacts of 

NGS. 

The GTP operator used in (2.22) is a conversion relationship to calculate the 

power output of a GPP 
mglP  based on the corresponding nodal gas injection 

, Gi lGS  

in NGS, which is described in (2.24). However, according to the heating rate 

curve [14], the amount of natural gas consumed by a GPP at electric node m  is a 

quadratic function of the power generation, which is expressed as:  

 
2

, ( ) /
G mg mgi l mg mg l mg lGS P P GHV  = +  +    (2.23) 

where 
mg , 

mg  and 
mg  are the heat rate coefficients of GPP at node m . GHV  

refers to the gas gross heating value. 

Hence, 
mglP  is the solution to equation (2.23):  

 

2

,4 ( )

2

G

mg

mg mg mg mg i l

l

mg

GS GHV
P

   



− + −   − 
=   (2.24) 

As seen from the computation procedure from (z)GS

iu to ( )GP

mu z , the impacts 

of NGS on the risk of the power system could be embodied in the multi-state 

model of GPP.  

The power output of a GPP also depends on its risk. The power output is zero 

when the GPP fails and 
mglP  when the GPP is in the operation state. The UGF for a 

GPP at electric node m  considering random failures is defined as:  

 0( )
lmg

PG A U

mg mg mgu z p z p z  =  +    (2.25) 

where A

mgp   and U

mgp   are the availability and unavailability of a GPP at electric 

node m , respectively.  
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Considering both the impacts of NGS and the risk of GPPs, the combination of 

(2.22) and (2.25) is used to obtain the power output of multi-state GPP ( MGGm
). 

The series operator Ω s
 is applied to calculate the UGF for MGGm

:  
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where 
mgg

GG

lp  and 
mgglP  are the probability and power output of MGGm  at node m  

for state 
mggl , respectively. There are 

mggK  states of MGGm  considering the im-

pacts of NGS and the risk of GPPs. 

2.4.2 Risk model for coal-fired generators 

Considering random failures, the risk model for a coal-fired generator (CFG) 

can be represented as a two-state model. The UGF of CFG c  at node m  is de-

fined as the polynomial: 

 
max

0( ) mcPC A U

mc mc mcu z p z p z  =  +    (2.27) 

where A

mcp   and U

mcp   are the availability and unavailability of CFG c , respective-

ly. max

mcP  refers to the available capacity of CFG c  at node m . 

Since there are also several CFGs installed at one node, the multi-units at node 

m  can be represented as a multi-state coal-fired generator ( MCGm ) using the 

UGF method. The corresponding UGF for MCGm  can be obtained by using the 

parallel operator Ω g
 over UGF representations of mcn  CFGs: 
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where 
mgf

GF

lp  and max

mgflP  are the probability and total available capacity of MCGm
 at 

node m  for state 
mgfl , respectively. There are 

mgfK  states of the MCGm
 consider-

ing random failures. 

2.4.3 Risk model for generation provider 

The GPPs and CFGs could coexist at node m . The combination of MCGm
 and 

MGGm  is represented as a multi-state generation provider at node m  ( MGPm ). 

The parallel operator Ω p
 over the UGF representations of MCGm  and MGGm  is 

used to obtain the UGF of MGPm , which can be expressed as: 
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where 
mg

G

lp  and 
max

mglP  are the probability and total available capacity of MGPm  at 

node m  for state 
mgl , respectively. The generation provider MGPm  has 

mgK  states.  

2.4.4 Risk analysis of power system 

The stochastic failures in both NGS and the power system can result in trans-

mission line congestion or customer interruptions. The influence of random fail-

ures in NGS on the power system has been embodied in the multi-state model in 

(2.22). For an M-electric-node system with K  states, the multi-state model for the 

power system could be obtained by the OPF composition operator Ω OPF
 after 

evaluating the ( )G

mu z . 
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where 
lp  and 

ml
LC  are the probability and electric load curtailment at node m  for 

state l , respectively.  
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The OPF operator used in (2.30) is defined as a linear optimization model to de-

termine the electric load curtailment for state l  at node m , which is described in 

(2.31)-(2.35). The objective function is to minimize the total cost of electric load 

curtailment for state l  [15].  

 
1

( )
m

M

l l

m

Min f OC LC
=

=   (2.31) 

Subject to the following constraints: 

Power balance constraints: 

 
l l l l = −B θ P D   (2.32) 

Generating unit limits: 

 
max0

m mgl lP P    (2.33) 

Load curtailment constraints: 

 
max0

m ml lLC LC    (2.34) 

Line flow constraints: 

 ( ) max1
m n mn

mn

l l l

l

S
x

 −    (2.35) 

where 
ml

LC  is load curtailment at node m  for state l ; ( )
ml

OC LC  is load curtail-

ment cost which is modeled as a linear function; 
lB  is the admittance matrix of 

transmission network;  1= , , , ,
T

l l lm lM  θ L L  is phase angle vector of the node 

voltages;  1= , , , ,
T

l l lm lMP P PP L L  is the vector of power generations for state l ; 

1, , ,= , , , ,
T

l l m l M lD D D  D L L is the vector of node loads for state l ; 
ml

P  is the 

power generation of MGPm
 and 

ml
  is the phase angle of voltage at node m ; 

mnlx  

and 
max

mnlS  are the reactance and power flow limits of the line between node m  

and n , respectively.  

2.4.5 Risk indices for power system 

Similar to the risk indices in NGS, the loss of electric load probability 

(
mLOELP ) and the expected energy not supplied (

mEENS ) are introduced to 

evaluate the nodal risk of the power system [1]. After calculating the 
lp  and 

ml
LC

at node m  for each state from (2.30), the risk indices 
mLOELP  and 

mEENS  at 

node m  can be calculated as: 

 ( )
1

l 0
m

K

m l l

l

LOELP p LC
=

=     (2.36) 
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1

8760
m

K

m l l

l

EENS p LC
=

=    (2.37) 

2.6 System studies 

The proposed techniques and models are applied to analyze the risk of the test 

system composed of the modified IEEE 30-bus power system from [16] and the 

Belgian 20-node gas system detailed in [17], as shown in Fig. 2.4. The Belgian 20-

node gas system is composed of seven gas wells, three centrifugal compressors, 19 

pipelines, and three gas storages. On the other hand, the power system has 6 gen-

erating nodes, 27 load nodes, 41 transmission lines, and 9 generating units. It is 

assumed that there are three GPPs at electric nodes 1, 13, and 5 which are supplied 

from the gas flow at gas nodes 10, 16, and 7 of NGS through connections C1, C2, 

and C3, respectively.  
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Fig. 2.4 Test system composed of the modified IEEE 30-bus power system and 

the 20-node Belgian gas system 

 

The physical parameters of gas compressors (such as heat ratio, suction tem-

perature, compressor ratio, etc.), pipelines (such as diameter and length) and gas 

gross heating value can be found in [18]. The risk parameters of CFGs and GPPs 

can be found in [19]. The customers in the power system are divided into industri-

al, commercial, and residential, whose interruption costs per unserved MWh [20] 

are presented in Table 2.1. According to references [21] and [22], the unavailabil-

ity of gas compressors and gas storage is 4% and 5%, respectively. Hence, the 

maximum compressor ratio of gas compressors and the capacity of gas storage are 

assumed to have three states, as shown in Table 2.2 and Table 2.3, respectively. 

Based on this, the capacity level of gas storages is 0.1. 

Table 2.1 The interruption costs for different customers 

Customer sector Location (bus) Interruption costs ($/unserved MWh) 

Residential 3,4,8,10,12,17,19,20,24,26,27 1000 

Commercial 5,6,14,15,21,22,28,29 10000 

Industrial 2,7,9,16,18,23,25,30 5000 

 

Table 2.2 Maximum compressor ratio for different sates 

Gas compressor State 1 (
max

ciR /
c

c

lp ) State 2  (
max

ciR /
c

c

lp ) State3  (
max

ciR /
c

c

lp ) 
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C1 1.9/0.96 1.4/0.03 1/0.01 

C2 1.7/0.96 1.3/0.03 1/0.01 

C3 1.8/0.96 1.4/0.03 1/0.01 

 

Table 2.3 The capacity of gas storages for different sates (103m3/h) 

Gas storage State 1 ( ,max

, st

st

i lW
/

st

st

lp ) State 2 ( ,max

, st

st

i lW
/

st

st

lp ) State 3 ( ,max

, st

st

i lW
/

st

st

lp ) 

S1 1.6/0.92 0.9/0.04 0/0.04 

S2 1.4/0.91 0.8/0.04 0/0.05 

S3 1.2/0.92 0.7/0.05 0/0.03 

 

To illustrate the effectiveness of the proposed technique, three cases are mod-

eled to evaluate the nodal risk of IEGS. 

Case 1: The impacts of the coupling degree between the power system and 

NGS on the risk of IEGS are evaluated in this case. Three scenarios are considered 

in case 1: scenario A is the base case without considering the coupling between 

the two systems, where the connections C1, C2, and C3 are broken. Compared to 

scenario A, the connection C3 between electric node 5 and gas node 7 is consid-

ered in scenario B, and all the connections C1, C2, and C3 are considered in sce-

nario C. Besides, the capacity levels of gas storage stC  are set as zero for three 

scenarios in this case.  

The risk indices EGNS (103 m3/yr), LOGLP  in NGS and EENS  (MWh/yr), 

LOELP  in the power system at different nodes from three scenarios are shown in 

Table 2.4 and Table 2.5, respectively.  

Regarding the NGS, both EGNS  and LOGLP  are relatively constant with the 

increase of coupling degree between NGS and the power system. Moreover, it can 

be noted that there are huge differences between the risk indices at different nodes. 

The EGNS  at gas node 10 is the largest among all nodes, with values of 

4.9758×106 m3/yr, 4.9752×106 m3/yr, and 4.9761×106 m3/yr for scenarios A, B, 

and C, respectively. In contrast, the EGNS  at gas node 12 is relatively small for 

all scenarios. This is mainly because that gas node 12 is close to gas source nodes 

13 and 14 compared to other gas nodes. The customers at gas node 12 are easier to 

obtain gas supply in contingency states. 

Table 2.4 Risk indices in gas systems for case 1 

Gas 

node 

SCENARIO A SCENARIO B SCENARIO C 

LOGLP EGNS LOGLP EGNS LOGLP EGNS 

3 0.1048  1505.34  0.1048  1504.28  0.1048  1505.21  

6 0.1258  1917.94  0.1258  1918.95  0.1258  1918.21  

7 0.1597  2182.41  0.1597  2182.31  0.1597  2182.56  

10 0.1134  4975.84  0.1134  4975.24  0.1134  4976.11  

12 0.0373  794.20  0.0373  794.15  0.0373  794.40  

15 0.0587  947.32  0.0587  947.21  0.0587  947.23  

16 0.1708  3707.44  0.1708  3707.23  0.1708  3707.42  

19 0.0539  558.24  0.0539  559.11  0.0539  558.21  
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20 0.1286  1568.32  0.1286  1567.21  0.1286  1568.29  

 

Table 2.5 Risk indices in power systems for case 1 

Electric 

node 

SCENARIO A SCENARIO B SCENARIO C 

LOELP EENS LOELP EENS LOELP EENS 

2 0.0000  0.11  0.0000  0.78  0.0006  13.41  

4 0.0101  250.52  0.0272  837.70  0.0951  3010.05  

6 0.0001  1.82  0.0005  8.55  0.0039  78.39  

8 0.0030  95.73  0.0139  318.77  0.0323  865.80  

10 0.0101  264.85  0.0273  761.59  0.0833  2603.17  

12 0.0060  203.63  0.0263  781.29  0.0833  2761.29  

14 0.0048  107.05  0.0223  362.84  0.0540  1410.77  

16 0.0000  0.00  0.0000  0.00  0.0000  0.09  

18 0.0000  0.09  0.0000  0.54  0.0005  8.66  

20 0.0101  204.78  0.0281  602.45  0.0833  1837.46  

22 0.0001  1.48  0.0004  6.55  0.0030  57.11  

24 0.0095  140.75  0.0225  439.78  0.0609  1570.04  

26 0.0091  185.74  0.0192  486.50  0.0612  1451.22  

28 0.0031  68.35  0.0138  210.00  0.0251  579.39  

30 0.0000  0.00  0.0000  0.00  0.0000  0.08  

 

Regarding the power system, it can be seen from Table 2.5 that the EENS  at 

most nodes increase sharply with the increase of coupling degree. For example, 

the value of EENS  at node 12 is only 203.63 MWh/yr for scenario A and in-

creases to 2761.29 MWh/yr for scenario C. Likewise, there exist some nodes 

whose EENS  values are close to zero for all scenarios. This is mainly because 

these nodes with low loads are relatively close to generators. The power is easier 

to be transported from generators to consumers in contingency states, considering 

the operating constraints of the power system. Moreover, the variation trend of 

LOELP  at each node is in accordance with that of EENS . The LOELP  at node 12 

are relatively large, which are 0.0060, 0.0263, and 0.0833 for scenarios A, B, and 

C, respectively. 

Based on the results in Table 2.4 and Table 2.5, we can draw the conclusion 

that the increase of coupling degree has no impact on the risk of NGS, while can 

significantly reduce the risk of the power system. Compared to the GPPs which 

are assumed to obtain sufficient gas in the conventional power system, the output 

of GPPs in IEGS is determined by both the gas supplied to them and their own re-

liabilities. In this circumstance, the random failures in NGS will reduce the power 

output of GPPs connected to it, and further reduce the generating capacity in the 

power system. That is to say, the total available capacity max

mglP  in (2.33) will de-

crease, leading to the reduction of the feasible region of the OPF model. Besides, 

with the improvement of the coupling degree, more GPPs in the power system will 

be affected by the risk of NGS and the feasible region of the OPF model will be 
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reduced furtherly. Therefore, the impacts of failures in NGS on the power system 

will certainly increase with the improvement of the coupling degree. 

 
Fig. 2.5 Comparisons of nodal LOGLP in NGS for different methods 

 
Fig. 2.6 Comparisons of nodal LOELP in power system for different methods 

 

For validating the accuracy of the proposed method, the Monte Carlo simula-

tion (MCS) approach is also developed to compare the results obtained by the 

proposed method. The convergence error is set to be 0.05. The computer programs 

for the proposed method and MCS were implemented on a PC with a 1.6 GHz 

processor.  

The comparisons of results between the proposed method and MCS for different 

scenarios are given in Fig. 2.5 and Fig. 2.6. It is illustrated that the results of the 

proposed method are close to those of the MCS technique. The average percentage 

error of the proposed method and MCS is 4.82%, which is relatively low. 

The computation times of the proposed method and MCS for different scenarios 

are illustrated and compared in Table 2.6. The average computation time of MCS 

is 7.67 times that of the proposed approach for obtaining the results. Besides, the 
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computation time of Scenario A is shorter than that of Scenario B and C since the 

coupling between NGS and the power system is not considered in Scenario A. 

Table 2.6 Comparison of computation time for different methods 

Computation time(s) SCENARIO A  SCENARIO B  SCENARIO C 

Proposed method 336.4 641.5 654.3 

MCS 3163.5 4640.6 4717.6 

 

Case 2: The impacts of gas storage capacity levels 
stC  on the risk of IEGS are 

evaluated in this case. As defined in (2.6), stC  refers to the capacity levels of gas 

storage compared to gas loads. In this case, four scenarios are analyzed, including 

0, 10%, 20%, and 40% capacity levels. In common with scenario C in case 1, the 

NGS and power system are connected through connections C1, C2, and C3. The 

risk indices EGNS  (103 m3/yr) in NGS and EENS  (MWh/yr) in the power system 

are shown in Fig. 2.7 and Fig. 2.8, respectively. 

Fig. 2.7 shows the nodal EGNS  in NGS for different storage capacity levels 

stC . When stC  is 0, the values of nodal EGNS  are large, which are 2.1826×106 

m3/yr, 4.7961×106 m3/yr, and 3.7074×106 m3/yr at gas nodes 7, 10, and 16, respec-

tively. With the increase of stC , the EGNS  at each gas node all decrease sharp-

ly. When stC  changes from 0 to 20%, the EGNS  at gas node 10 decreases from 

4.7961×106 m3/yr to 1.8392 ×106 m3/yr. For the 40% scenario, the values of 

EGNS  are relatively small, which are only 1.3723×105 m3/yr, 1.7159 ×105 

m3/yr, and 4.6141 ×105 m3/yr at gas nodes 7, 10, and 16, respectively.  

For the power system, the nodal EENS  for different storage capacity levels stC  

are shown in Fig. 2.8. Firstly, in accordance with nodal EGNS  in NGS, the nod-

al EENS  in the power system also decreases sharply with the increase of stC . 

When stC  changes from 0 to 20%, the values of EENS  at nodes 4, 10, and 12 all 

decrease from about 2800 MWh/yr to 1500 MWh/yr. Moreover, there are also 

large differences between EENS  at different electric nodes. With regard to the 

nodes with low loads, such as nodes 6, 16, and 18, the nodal EENS  for each sce-

nario are all close to zero. Regarding the nodes with high loads, such as nodes 4, 

10, and 12, the nodal EENS  are relatively large, especially when stC  is 0.  

From the simulation results in Fig. 2.7 and Fig. 2.8, we can draw the conclusion 

that the increase in gas storage capacity levels could significantly improve the risk 

of IEGS. As significant gas reserves, the gas storages could ensure the uninter-

rupted gas supply to gas consumers during contingencies. Besides, GPPs can ob-

tain sufficient fuels from NGS instead of reducing their power output in contin-

gency states. Therefore, introducing gas storages to reduce the impacts of failures 

in NGS on the risk of the power system can be an effective approach.  
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Fig. 2.7 Nodal EGNS for different Cst in gas system. 

 

 
Fig. 2.8 Nodal EENS for different Cst in power system. 

 

Case 3: In order to compare the computation time and results of UGF and MCS 

methods on a larger test system, three scenarios with different dimensions are con-

sidered in this case. The power systems used in scenarios A, B, and C are the mod-

ified IEEE 57-bus [23], IEEE 118-bus [24], and IEEE 300-bus systems [25], re-

spectively. It is assumed that three GPPs at electric nodes 1, 8, and 12 in scenario 

A, at electric nodes 4, 54, and 100 in scenario B, and at electric nodes 19, 156, and 

222 in scenario C are supplied from the gas flow at gas nodes 10, 16 and 7 of 

NGS, respectively. The NGS in these three scenarios is the same as that in the pre-

vious cases. The risk parameters of CFGs and GPPs can be found in [29]. Moreo-

ver, the convergence error of the MCS method is set to be 0.05. The computer 

programs for UGF and MCS methods were implemented on a PC with a 1.6 GHz 

processor. 
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The comparisons of EENS  between UGF and MCS methods for different sce-

narios are given in Table 2.7 and Table 2.8. It is illustrated that the results of the 

UGF method are close to those of the MCS technique. The average percentage er-

rors of the UGF and MCS methods are relatively small, which are 3.3%, 0.9%, 

and 0.8% for scenarios A, B, and C, respectively. This is an acceptable difference 

as we know that the results of MCS are only estimates that lie within upper and 

lower bounds with a given probability.  

Table 2.7 Comparisons of EENS for different methods in scenarios A and B 

SCENARIO A (57-BUS SYSTEM) SCENARIO B (118-BUS SYSTEM) 

Node UGF MCS Node UGF MCS 

1 3527.31 3640.75 4 1380.89 1325.81 

5 726.37 740.35 12 0.00 0.00 

8 68.17 118.16 20 0.00 0.00 

12 86.46 126.71 28 0.00 0.00 

16 2614.36 2686.42 39 232.09 203.47 

21 0.00 0.00 47 0.00 0.00 

25 395.84 403.06 51 771..37 688.24 

29 937.86 958.20 57 23.50 27.67 

32 126.93 129.99 62 0.00 0.00 

35 7.66 10.10 67 753.76 818.07 

39 0.00 0.00 76 1469.92 1443.94 

43 154.38 158.06 86 1697.18 1792.46 

47 17.11 26.12 97 2180.94 2191.16 

51 13.23 19.20 103 205.39 204.01 

55 420.39 427.96 112 1279.10 1253.73 

 

Table 2.8 Comparisons of EENS for different methods in scenarios C 

SCENARIO A (57-BUS SYSTEM) SCENARIO B (118-BUS SYSTEM) 

Node UGF MCS Node UGF MCS 

1 2940.51 2933.29 140 0.00 0.00 

20 0.00 0.00 160 0.00 0.00 

40 0.00 0.00 181 2086.12 2083.72 

60 2482.59 2478.23 200 0.00 0.00 

80 0.00 0.00 240 2363.39 2359.68 

100 0.00 0.00 260 0.00 0.00 

121 2473.94 2469.62 300 245.62 247.28 

 

The computation times of UGF and MCS methods for different scenarios are 

compared in Table 2.9. It can be noted that the computation time of the UGF 

method for obtaining the results increases more obviously than the MCS technique 

with the increase of system size. The computation time of the UGF method is 0.82 

times, 1.19 times, and 1.90 times that of the MCS technique for scenarios A, B, 

and C, respectively. With the increase in system size, the number of system states 
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increases exponentially and the computation time of the UGF method can be long-

er [8]. With regard to the MCS technique, the required number of samples for a 

given convergence error is independent of the size of the system [26]. Therefore, 

the MCS technique is suitable for a large-scale system whereas the UGF method is 

more suitable for a relatively smaller system. 

Despite the relatively lower computation efficiency in large-scale systems, the 

UGF method is still an effective tool for risk analysis [6, 8]. Firstly, the UGF 

method could represent multi-state systems in an analytical way and therefore the 

risk indices could be evaluated using mathematical solutions [8]. Therefore, the 

UGF method could give the same numerical results for each calculation, whereas 

the results obtained by the MCS technique are dependent on the number of simu-

lations [8, 26]. Another major advantage of the UGF method is that it could clearly 

represent the performance distribution of a system with a complex structure. 

Based on the UGF method, we can easily obtain the performance distribution of 

the entire system based on the given performance distributions of its elements us-

ing algebraic procedures [8]. Therefore the UGF method can provide an effective 

tool for analyzing the risk of IEGS.  

Table 2.9 Comparison of computation time for different methods 

Computation time(s) SCENARIO A  SCENARIO B SCENARIO C 

UGF 4762.73 13609.9 39557.2 

MCS 5742.41 11423.3 20840.9 

2.7 Conclusions 

The integration of NGS and power system requires evaluation of reliabilities of 

the power system and NGS simultaneously. This chapter proposes a general 

framework for the risk evaluation of IEGS considering the tight coupling between 

NGS and the power system. The multi-state model of NGS is developed utilizing 

the UGF method considering the stochastic performances of individual compo-

nents in NGS. The GTP operator is developed to obtain the power output models 

of GPPs based on the multi-state model of gas injection at each node. Using this 

multi-state model, the impacts of NGS are incorporated into the risk evaluation of 

the power system. Moreover, the customers’ nodal reliabilities for both the NGS 

and the power system in three cases are evaluated.  

The results show that the improvement of the coupling degree will increase the 

impacts of failures in NGS on the power system. It is an effective method to intro-

duce gas storage to increase the risk of IEGS. Besides the UGF method, there are 

several other well-established methods that can be developed to evaluate the risk 

of IEGS. In this chapter, we also utilized the MCS technique to evaluate the risk of 

large-scale IEGS. Other methods can also be discussed for future studies in this 

new research area. 
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3 Short-Term Risk Evaluation of Integrated Elec-
tricity and Gas Systems Considering Dynamics of 
Gas Flow 

3.1 Introduction 

The studies in Chapter 2 focus on the long-term (time-independent) risk evalua-

tion of integrated electricity and gas systems (IEGS), where the steady gas flow 

model is utilized. However, the previous techniques can be not fully applicable for 

evaluating the short-term risk of IEGS on the operational horizon [1]. Short-term 

risk is formulated on the time-scale of hours to days, during which the dynamics 

of gas flow are significantly slower than those of electricity flow. When the gas 

well fails, the downstream gas-fired units (GFUs) may still be able to generate 

electricity for a relatively short period by utilizing the gas stored in the pipelines 

[2]. It can serve as an effective buffer to mitigate the consequences of gas well 

failures. Consequently, using the steady-state gas flow model will lead to inaccu-

racies in the short-term risk evaluation.  

The dynamics of gas flow were modeled in the traditional natural gas transmis-

sion system design and simulation [3, 4]. However, it is not easy to embed it into 

the electricity system operation. The gas flow dynamics are governed by a set of 

partial derivative equations. It is difficult to obtain analytical solutions for a set of 

generally connected gas pipelines. Finite-difference schemes were usually adopted 

to discretize the partial derivative equations into numerical equations [5]. Recent-

ly, the gas flow dynamics have been considered in the unit commitment [6] and 

economic dispatch [7] in the IEGS under wind uncertainties. The gas flow dynam-

ics were also used in [8] to characterize the interdependency between the electrici-

ty and gas systems. However, its effect on the short-term risk of IEGS has not 

been quantitatively explored yet. 

To fill the aforementioned research gaps, this chapter contributes in the follow-

ing aspects: 

1) A novel short-term risk evaluation framework for IEGS is proposed. Com-

pared with traditional steady-state based risk evaluation techniques, the proposed 

technique is more practical in the operational phase by incorporating the gas flow 

dynamics. 

2) Multi-state short-term risk models for IEGS components are developed, 

which are capable of characterizing the time-varying state probabilities. Especially 

for GFUs, both the inherent failure and constraints from gas flow are considered. 

3) A multi-stage contingency management scheme is proposed to determine the 

time-varying load curtailments, considering the interdependency between the elec-

tricity and gas systems. Both the optimal dispatch strategy and transient-state 

analysis (TSA) of gas flow are incorporated. 

4) For evaluating the short-term risk indices with partial derivative equations, a 

time-sequential Monte Carlo simulation (TSMCS) technique is developed by em-
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bedding the finite-difference scheme into its inner loop. Several practical tech-

niques are also developed to reduce computation time.  

This chapter includes research related to short-term risk analysis of IEGS con-

sidering the dynamic features of gas flows by [9].  

3.2 Short-Term Risk Models of IEGS Components Considering Gas 

Flow Dynamics 

 
Fig. 3.1  Multi-state short-term risk model of IEGS considering the gas flow dy-

namics 

 

As illustrated in Fig. 3.1, in the natural gas transmission system, the gas pipe-

lines are responsible for transporting the gas from distant gas sources, e.g. gas 

wells and storages, to the demands at different gas buses (GB). One of the gas 

demands is the non-power gas load from residential and industrial users, etc. The 

other type is the gas consumption from GFUs, through which the electricity sys-

tem is interconnected with the gas system.  

The short-term risk of gas sources, GFUs, and traditional fossil units are repre-

sented using multi-state models. The gas source at a bus usually consists of several 

gas wells using directional and horizontal drilling technology [10]. The GFU is al-

so a complex system comprising many parts, and the failures of these parts may 

lead to a situation in which the GFU operates in a derated state [11]. Therefore, 

compared with the traditional binary-state model, multi-state representations are 

more flexible and accurate for those components in risk evaluations [12]. The ef-

fects of gas flow dynamics on the multi-state models are presented in Fig. 3.1. 

During IEGS operation, the random failures or deratings of gas sources could re-

duce their gas production capacities. Due to the gas flow dynamics in the trans-

mission, such failures do not reduce the available gas injection to the downstream 
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GFUs immediately. Incorporating the inherent failures of the GFU, it determines 

the dispatchable electricity generation capacity of the GFU in real-time. Therefore, 

comprehensive short-term risk models should be developed to accurately charac-

terize such unique and time-related behavior of those IEGS components. 

3.2.1 Short-term risk model of the gas source  

Firstly, the multi-state short-term risk model is developed to model the random 

failures and repairs of multiple gas wells and storages at a GB. 

Generally, the risk model of gas well or storage g at bus i uses binary-state rep-

resentations 
,

h

i gW , where h = 1 for perfect functioning state and h = 2 for complete 

failure state, respectively [13]. During the operation, the gas well capacity
, ( )i gW t  

evolution in its state space produces the stochastic capacity process 
1 2

, , ,( ) { }i g i g i gW t W W ，  by random failures and repairs. Let 
, ( )h

i gpr t  be the probabil-

ities of gas well g at bus i at state h: 

 
, , ,( ) Pr{ ( )= }, 1,2,  0h h

i g i g i gpr t W t W h t= =   (3.1) 

The state transition of the gas well is represented as a Markov process [12]. 

Normally all the components are assumed to be perfect functioning after commit-

ment at the beginning of the simulation period ( 1

, 0 ,( )i g t i gW t W= = ). Then, 
, ( )h

i gpr t  

can be obtained as [1]: 
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
 = + −

 (3.2) 

where 
,i g  and 

,i g  denote the failure and repair rates of gas well g at bus i, re-

spectively.  

The state of the gas source is determined by the state combination of corre-

sponding gas wells, and therefore its risk can be represented using a multi-state 

model. The total gas production capacity takes random values from 
1( ) { ,..., ,..., }h NH

i i i iW t W W W , the value of which in state h can be calculated by: 

 
1

,

i

h

i i g

g NG

W W


=   (3.3) 

where iNG  is the set of gas wells or storages in the perfect functioning state at 

bus i.  

3.2.2 Gas flow dynamics in the pipeline 

The changes in gas flow after gas source failures are evaluated using the TSA 

in this chapter. Under the assumption of isothermal gas flow and a constant com-

pression factor in a horizontal pipeline, the following partial derivative equations 

are typically used to describe the continuity and motion of the gas flow in a pipe-

line [14]: 
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where p and q are the gas pressure and gas flow, respectively. ω is the isothermal 

wave speed of gas. ε is the gas density at the standard temperature and pressure, D 

is the diameter of the pipeline, and F is the Fanning transmission factor.  

3.2.3 Short-term risk models of the GFU and traditional fossil unit 

The dispatchable electricity generating capacities of the GFU and traditional 

fossil units are both related to their inherent failures and repairs. For GFU, particu-

larly, the capacity further relies on the gas supply from the gas transmission pipe-

lines. 

The inherent failure and repair process of GFU or traditional fossil unit is mod-

eled as the Markov process. Considering GFU l at bus i with 
,i lNH  states. The 

electricity generating capacity for each state h (h=1, 2, …,
,i lNH   ) is

,

h

i lE . The 

probability of the GFU being in the state h, 
, ( )h

i lpr t , can be obtained by solving 

the following differential equation set [1]: 
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where 
, 'h h   is the state transition rate of the GFU from state h to h’. The state 

probability of traditional fossil units can also be calculated correspondingly.  

As mentioned, the dispatchable electricity generating capacity of GFU is fur-

ther limited by the sufficiency of gas at the exact time and location. If the GFU 

capacity determined by the inherent failure is
,

h

i lE  , and the maximum available gas 

injection determined by TSA is , ( )i lgi t , then the real-time dispatchable electricity 

generating capacity of GFU 
, ( )RT

i lE t  can be calculated as [15]: 
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where
,i l  , 

,i l , and 
,i l  are the coefficients of heat rate for GFU l at bus i, re-

spectively. 
gH  is the high heat value of natural gas.  

3.3 Multi-stage Risk Management Scheme for IEGS Considering 

Gas Flow Dynamics 

 
Fig. 3.2 Multi-stage risk management scheme 

 

During IEGS operation, failures or deratings of gas sources, GFUs, and tradi-

tional fossil units can reduce the electricity and gas capacities suddenly, and thus 

transfer the IEGS from the normal operating state to a contingency state. In this 

circumstance, gas production and electricity generation should be re-dispatched. 

The electricity or gas loads would be curtailed, even in the worst case, to maintain 

a balanced operation and manage the system risks.  

Due to the slower dynamics of gas flow, the steady-state based optimal power 

flow that is commonly adopted in the traditional electricity systems, is no longer 

suitable for evaluating the load curtailment in IEGS directly. Therefore, a multi-

stage contingency management scheme is proposed. 

3.3.1 Framework of the multi-stage risk management  

As outlined in Fig. 3.2, the multi-stage contingency management scheme is de-

veloped. The IEGS initially operates in the normal state at the beginning. When 

failures or derations of gas sources, GFUs, or traditional fossil units occur, the 

IEGS may be transferred into a contingency state. The contingency management 
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scheme begins with receiving the contingency state information, e.g., the failed 

generating units. The desired operating condition in the first stage is evaluated us-

ing a steady-state based integrated electricity and gas optimal power flow. Though 

the load curtailments are not finalized in this stage, it sets the boundary conditions 

for the TSA in the next stage, i.e., the nodal gas pressure or the quantity of gas 

supply. In the second stage, the TSA is conducted to determine the real-time oper-

ating condition of the gas system, e.g., the real-time gas load curtailment (GLC) 

and the available gas injection for GFUs. The latter factor is to further impose 

constraints on the GFU ramping, for evaluating the real-time electricity generation 

and electricity load curtailment (ELC) in the third stage.  

3.3.2 First stage: re-dispatch in the contingency state using inte-

grated electricity-gas optimal power flow 

In the first stage, the integrated electricity-gas optimal power flow is conducted 

for determining the re-dispatch in the contingency state. Based on the total gas 

production capacities of gas sources, electricity generating capacities of GFUs and 

traditional fossil units, and other necessary network parameters of IEGS, the fol-

lowing variables in system state sequence k are calculated: 1) gas production of 

gas sources 
,i kw ; 2) active power of GFU l at bus i, 

, ,i l kP , and its reactive power 

, ,i l kQ  ; 3) active power of traditional fossil unit m at bus i, 
, ,i m kP , and its reactive 

power 
, ,i m kQ  ; 4) ELCs at bus i, 

,i kec ; 5) GLCs at bus i, 
,i kgc . The objective of 

the first stage is to minimize the total operating cost 
kTC . It includes the gas pur-

chasing cost, the generation cost of traditional fossil units, and the interruption 

costs of ELCs and GLCs.  
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 (3.8) 

Subject to the following constraints:  

a) Electricity generation output limits on GFUs and traditional fossil units:  

 , ,i i k i kW w W    (3.9) 

 , , , , ,i l i l k i l kP P E    (3.10) 

 1 1

, , , , , , , , , ,/ /i l i l k i l i l k i l i l k i lQ E E Q Q E E    (3.11) 

 , , , , ,i m i m k i m kP P E    (3.12) 

 1 1

, , , , , , , , , ,/ /i m i m k i m i m k i m i m k i mQ E E Q Q E E   (3.13) 

b) Electricity/gas load curtailment constraints: 

 
, ,[0 0] [ ] [ ]i k i k i iec gc ec gc    (3.14) 

c) AC power flow constraints: 
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d) Steady-state gas flow constraints: 

 , , , , ,+ 0
g

i i

i k i i l k i k ij k

l NL j

w GL gi gc q
 
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 2 2

, , , , ,sgn( )ij k ij i k j k i k j kq C p p p p= − −   (3.18) 

e) Electricity power flow and gas flow limits: 

 , ,[ ] [ ]ij k ij k ij ijf q f q   (3.19) 

where EB, GB, 
iNM  , and iNL  are the sets of electricity bus (EB), GB, traditional 

fossil unit, and GFU at bus i, respectively. kT  is the duration of system state se-

quence k. i  is the gas price at bus i. e

iCDF  and g

iCDF  are the electricity and 

gas customer damage function [16]. 
,i mcst  is the generation cost function for tradi-

tional fossil units. 
, ,i m kE  is the electricity generating capacity of traditional fossil 

unit at system state k. 1

,i mE  is the electricity generating capacity of traditional fos-

sil unit at perfect functioning state. 
,ij kf  and

,ij kq   are the electricity and gas flows 

from bus i to j. 
iP  and 

iQ  are the active and reactive power of electricity load. 

, ,i l kgi  is the gas consumption of GFU. 
,i kV  and 

,i j k  are the amplitude and phase 

angle. 
ijG  and 

ijB  are the conductivity and susceptance of the electricity branch. 

e

i  and g

i  are the sets of electricity branches and gas pipelines connected to bus 

i. 
,i kp  is the nodal natural gas pressure at bus i. 

ijC  is a characteristic parameter of 

the pipeline, depending on the length, absolute rugosity, and some other proper-

ties. sgn( )x  is the signum function, where sgn( ) 1x =  if x≥0, and sgn( ) 1x = −  if 

x<0.  

3.3.3 Second stage: operating condition of the gas system using 

TSA 

The results from the first stage have defined the desired operating condition of 

IEGS, and meanwhile set the initial and boundary conditions for the second stage.  

The two partial derivative equations (3.4) and (3.5) are formulated for each 

pipeline. Four values are required to characterize the state of a pipeline: the gas 

pressures and gas flow quantities at the beginning and end of the pipeline, respec-

tively. Two of these four values should be specified as the boundary conditions. 

They can be either set as a given value, or specified implicitly in the equations as-

sociated with adjacent pipelines.  

According to the types of expected boundary conditions, GBs can be divided 

into three categories: gas load bus, gas source bus, and other conjunction GB. For 

all the GBs, the gas pressures at the connecting point of pipelines are equal, as in 
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(3.20). For gas load buses, the gas pressures are specified as the values from the 

first stage, as in (3.21). For gas source buses and other conjunction GBs, Kirch-

hoff law holds, as in (3.22), where 
,i kw  is set according to the results from the first 

stage. 

 
1

2

0 0 1

0 2

( )

( )
ij

g

ij x x iij

g

ij x ij i x L

p p j

p p j

= =

= =

=  

=  
   (3.20) 

 0 , ,,
ij

ij x i k ij j kx L
p p p p= =

= =    (3.21) 

 , 0 0
ji

g g
i i

i k ji ij xx L
j j

w q q ==
 

+ − =     (3.22) 

where 
ijL  is the length of the pipeline from bus i to j.  

At the beginning of the study period, the initial condition is set according to the 

results from the first stage when all the IEGS components are in the perfect func-

tioning state. As the simulation proceeds, the initial condition in system state se-

quence k is set as the operating condition at the end of system state sequence k-1: 

 
1, 0 , 1( , ) ( , )

kij k t ij k t Tp x t p x t
−= − ==    (3.23) 

 
1, 0 , 1( , ) ( , )

kij k t ij k t Tq x t q x t
−= − ==    (3.24) 

After solving the partial derivative equations, the real-time pressures and quan-

tities of gas flow can be obtained along all the pipelines. In the second stage, the 

gas loads are not necessarily fully satisfied, and the GFU capacities will be further 

constrained by the injected gas at the corresponding GB. Note that the real-time 

GLCs for non-power gas load ( )np

igc t  and GFU gas requirement 
, ( )RT

i lgc t are also 

time-varying. The sum of them ( )RT

igc t  can be calculated as: 

,

, , , 0

( ) ( ) ( )
i

ji
g g

i i i

RT np RT

i i i l

l NL

i i l k i k ji ij xx L
l NL j j

gc t gc t gc t

GL gi w q q



==
  

= +

= + − − +



  
  (3.25) 

The distribution of GLC among the non-power gas load and GFUs depends on 

the interruptible contracts between gas transport companies and generation utili-

ties. In practical cases, most of the contracts entail that the GFU gas requirement is 

the first candidate to be curtailed, which is also the case in this chapter [2, 17]: 

If , ,( )
i

RT

i i l k

l NL

gc t gi


   

, , , , ,( ) ( ) / ,     ( ) 0
i

RT RT np

i l i i l k i l k i

l NL

gc t gc t gi gi gc t


= =   (3.26) 

If , ,( )
i

RT

i i l k

l NL

gc t gi


    
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, , , , ,( ) ,     ( ) ( )
i

RT np RT

i l i l k i i i l k

l NL

gc t gi gc t gc t gi


= = −   (3.27) 

3.3.4 Third stage: operating condition of the electricity system us-

ing optimal power flow 

The GLC of GFU in the second stage now defines the maximum available gas 

injection 
,i lgi  in(3.7): 

 , , ,, ( ) ( )RT

i l k i li lgi t gi gc t= −   (3.28) 

 Now we can calculate the dispatchable electricity generating capacities of 

GFUs, 
,

RT

i lE , according to(3.7). Based on that, the electricity system is re-

dispatched to assess the actual ELC in the third stage. The objective is to minimize 

the electricity system operating cost EC, by controlling the GFU and traditional 

fossil unit generations, and the real-time ELCs RT

iec  for each time t: 

 
, ,  ( ) ( ) ( ) ( ( ))

i

RT e

i i k i m i m

i EB m NM

Min EC t ec t CDF T cst P t
 

 
= +  

 
   (3.29) 

Subject to (9) – (13), (15), (16), and the following (3.30): 

 [0 ] [ ( ) ( )] [ ]RT

ij i ij i ijf ec t f t ec f−     (3.30) 

3.4 Short-Term Risk Evaluation Procedures 

3.4.1 Computation time reduction techniques in the TSMCS 

The risk evaluation of the IEGS during the operational phase is the process of 

predicting the risk for the system operator and customers for a given system oper-

ating condition. The TSMCS is used to sample the chronological random failures 

during the operation and calculate the risk indices. In each system state simulated 

by the TSMCS, the optimization problem in the first stage is a nonlinear pro-

gramming problem, which is solved using the interior point method [18]. The con-

tinuity and motion equations in the second stage are discretized into a set of equa-

tions using a finite-difference scheme. It is implicit along the pipeline and explicit 

in the time dimension [14]. The equation set is solved using the Newton–Raphson 

method. The gas pressure and gas flow at each time step can thus be obtained.  

Nonetheless, directly embedding the finite difference scheme into the TSMCS 

will introduce tremendous computational burdens. Both the convergence of 

TSMCS requires many simulations, and each time step entails solving a large-

scale equation set. To address this issue we offer the following remarks from a 

practical point of view:  

1) Criteria for the completion of a transient process: With the knowledge that 

each transient process gradually converges to the corresponding steady-state, cal-

culations in each system state can be avoided by setting an appropriate tolerance. 
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Hence, a relative bound is set as the criteria for determining the completion of the 

transient process: 

 1( ( ) ( )) / (1 ( ) )t t t t t 


− − + − x x x   (3.31) 

where , , , ,
( ) [ ( ), ( ), ( )], , ,

RT

i j s i j s i
t p t q t gc t i j s= x  is the set of IEGS state variables, and s 

is the index of the pipeline segment. 

2) Offline contingency state database: To avoid redundant calculation of the 

same system state, storing the TSA results during the first calculation is critical for 

reducing the computation time. Suppose the operating condition of IEGS is x1(t) 

after the failure at t1. When the same failure pattern occurs for the second time at 

t2, the operating condition x2(t) can be pulled out from memories with a little mod-

ification x2(t)=x1(t+t1-t2). However, note that the offline results should only be 

used when the change of system state happens after the completion of the transient 

process.  

3.4.2 Risk evaluation procedures 

The expected demand not supplied (EDNS) and loss of load probability 

(LOLP) are commonly adopted to characterize the risk of the electricity system. 

To cope with the short-term risk evaluation of IEGS, EDNS and LOLP are re-

formed as time-varying indices, and are specified for each bus, as calculated in 

(3.32) - (3.33). Moreover, they are extended to the gas system, i.e. the expected 

gas demand not supplied (EGNS), and loss of gas probability (LOGP). They can 

be calculated using identical equations. 

 
1

( ) ( ) /
NS

RT

i i

n

EDNS t ec t NS
=

 
=  
 
   (3.32) 

 
1

( ) ( ( )) /
NS

RT

i i

n

LOLP t flag ec t NS
=

 
=  
 
   (3.33) 

where NS is the sampling times of the simulation. flag(x) is defined as a function 

where ( ) 1flag x =  if x>0, and ( ) 0flag x =  if x≤0. The coefficient of variation of 

EDNS is set as the stopping criterion for the TSMCS: 

 2( ( )) / ( )i i

i EB i EB

Var EDNS t EDNS t 
 

    (3.34) 

where ( )Var x  is the variance of x.  

In summary, the short-term risk evaluation procedure for IEGS is elaborated as 

follows: 

Step 1: Calculate the operating condition of IEGS at t=0 with all the IEGS 

components in the perfect functioning state according to (3.8)-(3.19). Initialize the 

conditions for the transient gas flow analysis and TSMCS. Initialize the offline 

contingency database. 
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Step 2: Generate the state sequences and corresponding total gas capacities for 

gas sources, and electricity generating capacities for GFUs and traditional fossil 

units, using the TSMCS sampling technique according to (3.1)-(3.3) and. 

Step 3: Set the length of pipeline sections 
ijx  and time step t  for the finite-

difference scheme in the TSA.  

Step 4: For each system state k, determine if it is in the offline contingency da-

tabase. If so, use the offline data (according to Section Ⅳ. A), and go to Step 9. 

Step 5: Conduct the first stage integrated optimal power flow formulated in 

Section Ⅲ. B. Obtain the results as the desired operating condition. Set the gas 

productions of gas sources and pressures at gas load buses as the boundary condi-

tions for TSA according to (3.20)-(3.22).  

Step 6: Conduct the second stage TSA for one time step t , and the pre-set ini-

tial/boundary conditions. Set the solutions as the initial condition for the next step 

according to (3.23) and (3.24). 

Step 7: Calculate the real-time GLCs for non-power gas load and GFU gas re-

quirement according to (3.25)-(3.27).  

Step 8: Evaluate the real-time dispatchable electricity generating capacity of 

GFUs according to (3.28). Conduct the optimal power flow in the electricity sys-

tem according to Section Ⅲ. D. 

Step 9: Repeat Steps 4-8 until it reaches the duration of system state k.  

Step 10: Repeat Steps 4-9 until the whole study period ST is reached.  

Step 11: Calculate the short-term risk indices according to (3.32) and (3.33). 

Evaluate the stopping criterion for TSMCS according to (3.34). If it satisfies 

 0,t ST , output the short-term risk indices as the final results. Otherwise, 

begin the next simulation from Step 1.  
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3.5 Case Studies 

 
Fig. 3.3 Integrated IEEE RTS and Belgium natural gas transmission system 

 

In this section, an integrated IEEE Risk Test System [19] and the Belgium gas 

transmission system [20] are studied, as illustrated in Fig. 3.3. The generating 

units No. 1, 2, 5, 6, 9, 10, 11, 16, 17, 18, 19, and 20 in the electricity system are 

replaced with the GFUs of the same capacities. The coefficients of heat rate and 

the gas purchasing price are referred to [15]. Simulations are performed on the fol-

lowing three cases to validate the proposed short-term risk evaluation technique. 

3.5.1 Case 1: Illustration of gas flow dynamics in a single pipeline 

The first illustrative case is performed on a single pipeline to demonstrate the 

gas flow dynamics during the contingency state, as well as the necessity to incor-

porate the gas flow dynamics in the short-term risk evaluation. The pipeline from 

GB 4 to GB 14 is used, which is assumed to be isolated from the IEGS, as pre-

sented in Fig. 3.3. A gas well is connected to GB 4. A gas load and a GFU are 

connected to GB 14, and an electricity load is further connected to the GFU. The 

capacities of the gas source and GFU are { 6,4,2,0 }  Mm3/day and 200 MW at 

different states. The gas pressure at GB 14 is a constant of 5.1784×106 Pa. The gas 

and electricity loads are 5 Mm3/day and 100 MW, respectively. The length of a 

pipeline section x =10 km, and the time step t =5 min [6]. The study period is 

168 h.  
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Fig. 3.4 GLCs and ELCs in the TSA and SSA 

 

As observed from the TSA results in Fig. 3.4, the failure of the gas source is 

triggered at t=3h. Then the ELC begins to increase while the GLC remains zero 

within T1. This is because the GFU’s gas requirement is the first to be curtailed 

compared to the non-power gas load. During T2, the insufficient quantity of gas 

supply exceeds the GFU gas requirement, and the gas load begins to be curtailed. 

Due to the slower dynamics of gas flow, part of the gas load can still be supplied 

by the linepack, and therefore the GLC increases gradually. The repair of the gas 

well completes at t=12h. Similarly, the gas load gradually recovers followed by 

the electricity load. Noted that due to the higher priority of gas load than the gas 

requirement of GFUs, the GLC recovers faster than it emerges. The incorporation 

of gas flow dynamics substantially influences the load curtailments, compared 

with steady-state analysis (SSA) where the state transition of IEGS can be regard-

ed as an instant process.  

Fig. 3.5 and 3.6 show the influences on the short-term reliabilities by gas flow 

dynamics. It is worth noting in Fig. 3.5(a) that the LOGP in TSA is almost the 

same as that in SSA, while LOLP in TSA is larger than that in SSA. This can be 

explained in Fig. 3.4. The duration of ELC>0 in TSA is longer than that in SSA by 

T1+T2, while the duration of GLC>0 in TSA is the same as that in SSA. Further 

exploring the first 12 hours in Fig. 3.5(b), a noticeable delay in the occurrence of 

LOGP can be found. It can also be explained by Fig. 3.4 that the GLC does not 

occur within T1. 

0 5 10 15 20

0.0

0.5

1.0

G
as

 l
o

ad
 

cu
rt

ai
lm

en
t 

(M
m

3
/d

ay
)

Time (hour)

 GLC (TSA)    ELC (TSA)    GLC and ELC (SSA)

T1

T3T2

0

100

200

E
le

ct
ri

ci
ty

 l
o

ad
 

cu
rt

ai
lm

en
t 

(M
W

)



54  

 

 

 
Fig. 3.5 LOGP and LOLP during the operational phase 

 

 
Fig. 3.6 EGNS and EDNS during the operational phase 

 

The EGNS and EDNS in Fig. 3.6 present a slightly different pattern. The 

EGNS in TSA is smaller than that in SSA, while EDNS in TSA grows higher as 

time goes on. It can be explained in Fig. 3.4. The GLC accumulated over time in 

TSA is smaller than that in SSA, while the ELC accumulated over time in TSA is 

larger than that in SSA. Similarly, as indicated by the simulations of the first 12 
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hours in Fig. 3.6(b), there also exist noticeable delays for EDNS and EGNS, ex-

cept that the effect of gas dynamics is more obvious.  

In summary, the following conclusions can be drawn from the above simula-

tions: (1) the gas flow in a transmission pipeline takes from minutes to hours to 

stabilize. (2) With the incorporation of the gas dynamics, the LOLP increases, 

while the EGNS and EDNS decrease. (3) The occurrences of LOGP, EGNS, and 

EDNS are delayed to varying degrees, and their increasing trends are also mitigat-

ed at the beginning of the simulation. 

3.5.2 Case 2: impact of gas flow dynamics on the failure propaga-

tion in a representative scenario 

In this case, a representative scenario exemplifies the propagation of failures in 

the gas system to the electricity system. A compound failure of 197 and 400 MW 

traditional fossil units at EB 13 and 18, and 2 Mm3/day deration of the gas source 

at GB 1 is triggered at t=0.83 h. The length of a pipeline section x =2000 m, and 

the time step t =15 min. The study period is 6 h. Here we define the delay time as 

the difference between the time of failure and the time of load curtailment occur-

rence. Also, we define the failure distance as the minimum distance along the 

pipeline between the studied GB and the GB where the gas component failure has 

happened.  

 
Fig. 3.7 Nodal GLCs and GFU capacities in TSA and SSA 

 

As shown in Fig. 3.7(a), GLCs at GBs present different delay times. For exam-

ple, the GLC at GB 20 increases immediately right after the failure, while GLC at 

GB 19 begins to increase at t=2.83 h. Note that in this case, the pressures at gas 

load buses are controlled to be constant in the TSA. There is no monotonicity be-

tween the delay time of the GLC and the failure distance. In fact, the feature of 

GLC is directly determined by the inlet and outlet gas flows of the GB, which can 

be further determined by the boundary conditions (the optimized pressures and 

flows at adjacent gas load buses and gas source buses, respectively). Take GB 19 

and 20 for example - though they are both at the end of the same gas branch, their 

GLCs present entirely different temporal patterns. GB 19 and 20 are both gas load 
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buses. Their pre- and post- fault pressures are controlled as 28.53, 26.11 bar, and 

29.50, 27.53 bar, respectively. Hence, the gas flow in the pipeline between GB 19 

and 20 can be soon stabilized to its steady-state value, which results in the imme-

diate stabilization of GLC at GB 20. On the contrary, looking at the upstream GBs 

of GB 19, the closest gas load bus is GB 10 still a long distance away. Hence, the 

GLC at GB 19 takes more time to stabilize.  

It is also worth mentioning that GLCs at almost all the GBs will reach their 

values in SSA after enough time, except GBs 6 and 10. As can be seen from Fig. 

3.3 that GBs 6 and 10 are connected with EBs 15 and 7 through GFUs. Therefore, 

by observing the difference between corresponding GFU capacities in TSA and 

the stabilized values in Fig. 3.7(b), it can be concluded that the GLCs at GBs 6 

and 10 are reduced by curtailing the gas consumption of GFUs instead. 

 
Fig. 3.8 Nodal ELCs in TSA and SSA 

 

The ELCs present a similar transient process, as shown in Fig. 3.8. The in-

crease in ELC is due to the time-varying GFU capacities. The ELC of EB 13 takes 

the longest time to stabilize since its electricity load is mostly supplied by the 

GFU at EB 7. Some of the ELCs present a multi-segment feature, such as EBs 8 

and 9. It is because the loads at these EBs are jointly supplied by GFUs at EB 1 or 

2, and 15.  

On the other hand, the stabilized value of ELCs in TSA does not necessarily 

equal those in SSA. For example, after considering the gas flow dynamics, the 

ELCs at EBs 8 and 9 have raised from 9.50 and 12.89 MW to 17.1 and 17.5 MW, 

respectively. This indicates that the consideration of gas dynamics and prior cur-

tailment of GFU gas consumption does lead to worse ELCs at some EBs eventual-

ly. Their reliabilities may also be inferior. 

3.5.3 Case 3: short-term risk indices 

The short-term risk indices for the studied IEGS are obtained in this case using 

TSMCS. Simulations were performed on a Lenovo laptop with an Intel® Core™ 

i7-8565U 1.80GHz and a 16GB memory. Observe from Table 3.1 that with the 

proposed technique, a computation time of 6.74h can be achieved. It allows the 

system operator to evaluate the short-term risk in the day ahead. Moreover, 
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TSMCS is perfect for parallel computing. The computation time can be further re-

duced with the implementation of production codes on a high-performance and 

parallel-architecture computing platform. 

The short-term risk of the IEGS is presented in Fig. 3.9 and 3.10. On account of 

the same reason in Fig. 3.4, the LOGP in TSA is almost the same as that in SSA, 

while the EGNS in TSA is much lower. As for the electricity system in Fig. 3.10, 

the EDNS in TSA is remarkably lower than those in SSA, while the LOLP pre-

sents an opposite pattern. 

Table 3.1 Computation times 

Proposed time reduction  

technique 
TOTAL (S) 

For offline  

contingencies (s) 
For TSMCS (s) 

With 24261 1747 22514 

Without 302170 / / 

 

 
Fig. 3.9 LOGP and EGNS during the operational phase 

 

 
Fig. 3.10 LOLP and EDNS during the operational phase 

 



58  

 

 

 
Fig. 3.11 Nodal LOGP and EGNS during the operational phase 

 

Considering that load curtailments vary spatially, the risk indices are further 

specified into the nodal scale. Observe from Fig. 3.11 that the delay times of 

LOGP and EGNS at GBs are different. The increase in LOGP begins with GB 20, 

which is the same as indicated in Fig. 3.7(a). The LOGP of GB 20 also remains 

the largest among all GBs during the operational phase. However, the EGNS of 

GB 16 begins to exceed GB 20 at t = 4.25 h. Noted that GB 16 is also at the end of 

another gas pipeline branch. This indicates that, although GB 20 is always most 

likely to be curtailed, GB 16 is also prone to suffer a more severe gas shortage af-

ter a certain time point. 

3.6 Conclusion  

This chapter proposes a short-term risk evaluation technique considering the 

gas flow dynamics. The short-term multi-state risk models of gas sources, GFUs, 

and traditional fossil units are developed, respectively, considering the interde-

pendency between the electricity and gas systems. A multi-stage contingency 

management scheme is proposed to use the gas flow dynamics to evaluate the 

time-varying electricity and gas load curtailments during the operation phase. The 

TSMCS is enhanced by embedding the finite-difference scheme to solve the par-

tial derivative equations of gas flow, as well as to obtain the short-term risk indi-

ces. Several practical techniques are adopted to reduce the computation time.  

From the simulation results in case studies, we find that by considering the gas 

flow dynamics in the operational phase, the EDNS and EGNS of the IEGS can be 

reduced significantly. The proposed risk evaluation technique is more accurate 

and practical in the operational phase compared with those that use the steady-

state gas flow model. It can be further utilized to assist the system operator in the 

short-term risk management in practical IEGS.  
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4  Risk Evaluation of Integrated Electricity and 
Gas Systems Considering Cascading Effects 

4.1 Introduction 

The above chapters mainly focus on the risk evaluation of integrated electricity 

and gas systems (IEGS) considering the failure propagation from natural gas sys-

tems (NGS) to power systems. However, the bidirectional dependence between 

NGS and power systems can bring about cascading effects in IEGS under special 

conditions. Due to random failures, the disruptions occurring in one system can 

have impacts on the operation of the other system, which may further feedback to 

the original system. Such an iterative process can be defined as cascading effects. 

When considering the cascading effects between NGS and power systems, small 

disturbances can be amplified and finally result in widespread damage. The cata-

strophic outages in the Southwestern United States in February 2011 can be served 

as a demonstration of the cascading effects in the IEGS [1]. Due to unexpected 

cold weather, the freezing of water vapor at several gas wellheads significantly re-

duced the transportation of gas from production areas to demands. Simultaneous-

ly, numerous generators were also failed due to weather-related causes, including 

frozen sensing lines, frozen equipment and etc. Further compounding the problem, 

the gas load curtailments caused the decrease of gas supplied to GPPs, leading to 

the massive reduction of the electricity supplies. On the other hand, the electric 

load curtailments caused the malfunction of electric-driven gas compressors in 

NGS and more gas loads were curtailed. Finally, more than 4.4 million energy us-

ers’ power and gas consumption were greatly affected during the long-duration 

blackout.  

The risk evaluation of conventional power systems has been well developed 

over the past few decades [2-6]. However, these techniques are more focused on 

the single power system without considering the interactions between NGS and 

power systems. Currently, several studies have been conducted to analyze the se-

curity and risk of IEGS considering the increasing electric and gas interdepend-

ence. In reference [7], the long-term risk of IEGS considering the power-to-gas 

devices and gas storages was evaluated utilizing the Monte Carlo simulation tech-

nique. In reference [8], the short-term risk of IEGS is analyzed based on the net-

work equivalent and integrated optimal energy flow techniques. Reference [9] 

proposes a multi-state model for the risk assessment of IEGS and evaluates the 

impacts of component failures occurring in NGS on power systems. Reference 

[10] proposes a risk assessment framework for integrated energy systems and in-

troduces a hierarchical decoupling technique for system optimal dispatch. The risk 

of IEGS under extreme events is also evaluated in [11] utilizing the Monte Carlo 

simulation (MCS) method. The risk-based planning for the multiple energy hub of 

IEGS is proposed in [12] based on a minimal cut-maximal flow algorithm.  
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Several key issues have not been considered in the prior-art studies for the risk 

evaluation of IEGS. Firstly, the impacts of interdependence-induced cascading ef-

fects on the risk of IEGS are neglected in most studies, which may cause the risk 

evaluation results more optimistic. Moreover, the previous studies usually adopt a 

succession of steady-state models to investigate the risk of IEGS supposing that 

the supply and demand can be balanced at all time in both NGS and power sys-

tems [9]. However, these models for risk evaluation cannot practically reflect the 

dynamic nature of cascading effects in IEGS, since natural gas and electric power 

flows usually travel through networks via different speeds. Therefore, different 

dynamic behaviors between power systems and NGS are imperative to be consid-

ered in the cascading effects modeling of IEGS. Furthermore, the previous studies 

usually adopt system-wide indices to represent the risk performances of IEGS 

without considering the locational difference of risk [7, 10]. Due to the transmis-

sion constraints and uneven distributions of energy sources and demands, the ef-

fects of random failures on the risk of IEGS can differ at different nodes. Nodal 

risk, therefore, has been adopted to evaluate the locational risk performances of 

energy systems [9]. However, the risk indices defined in references [9] are based 

on the calculation results of steady-state models without considering the temporal 

cascading effects in IEGS.  

The innovative contributions of the chapter  are summarized as:  

1) The framework for the risk evaluation of IEGS considering interdepend-

ence-induced cascading effects between power systems and NGS is pro-

posed. Moreover, the MCS technique is utilized to evaluate the impacts of 

cascading effects on the risk of IEGS.  

2) The dynamic cascaded analysis model is developed to describe the tem-

poral and spatial process of cascading effects considering the different dy-

namic behaviors between the power system and NGS. By taking the gas 

velocity and line pack into consideration, the re-dispatch model of NGS is 

set up to characterize the dynamic variation of gas pressures and flow rates 

between two time periods. Moreover, the stopping criterion of cascading 

effects is defined.  

3) In order to quantify the regional risk performances of IEGS considering the 

impacts of cascading effects, nodal risk indices for both the NGS and pow-

er system are defined based on the calculation results of dynamic cascaded 

analysis models. 

This chapter includes research related to the risk analysis of IEGS considering 

cascading failures between NGS and power systems by[13].  

4.2 Description of cascading effects in integrated electricity and 

gas systems  

The cascading effects in IEGS can be defined as complicated sequences of de-

pendent events between power systems and NGS under disruptive events [14, 15]. 

Moreover, the failures propagate between two systems through the coupled com-
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ponents. Therefore, the interdependence-induced cascading effects in IEGS are il-

lustrated in Fig. 4.1 with the concentration of the coupled components.  

 
Fig. 4.1 Cascading effects between NGS and power system 

 

Due to the bidirectional interactions between two systems, the disturbances in 

either NGS or power systems may lead to cascading effects. Taking the initial dis-

turbances in NGS as an example, the cascading effects in IEGS mainly include the 

following steps:  

Step 1) Initial failures in NGS: The initial failures of components can be caused 

by different disturbances, such as weather conditions or human errors. Due to the 

initial failures, the NGS will deviate from its normal operating state. 

Step 2) Re-dispatch of NGS: Considering the initial failures, the gas system op-

erator needs to adopt measures such as gas production adjustment or gas load 

shedding for the reliable operation of NGS. Generally, the generation utilities sign 

interruptible contracts with gas companies. If congestion appears in NGS or gas 

sources reach their maximum production for contingencies, the gas supplied to 

GPPs is firstly curtailed according to contractual agreements [16].  

Step 3) Impacts of failures in NGS on power systems: The gas load shedding in 

NGS may lead to the reduction of gas supplied to GPPs. Considering the operation 

characteristics of GPPs, the GPPs that cannot obtain sufficient gas will corre-

spondingly reduce their power output.  

Step 4) Re-dispatch of power systems: Due to the output reduction of GPPs, the 

power system operator will re-dispatch all the available generation units and loads 

to eliminate the power imbalance. If the adjustment of generation output cannot 
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realize the system power balance, electric load shedding will be implemented by 

system operators.  

Step 5) Impacts of re-dispatch of power systems on NGS: The electric load 

shedding in the power system may lead to the curtailment of power supplied to 

P2G facilities and EGSs. Hence, the EGSs will stop working if they cannot obtain 

a sufficient power supply. Likewise, the gas production of P2G facilities may de-

crease due to the reduction of power supplied to them.  

Iterations: If the malfunction of EGSs or the production change of P2G facili-

ties leads to the gas imbalance in NGS, the re-dispatch of NGS will be implement-

ed in Step 2. Under this condition, the NGS and power system will be re-

dispatched alternately until the cascading effects in IEGS stop.  

The previous analysis of cascading effects in IEGS begins with the disturbances 

in NGS. Likewise, assuming that the initial disturbances occur in the power sys-

tem, the cascading effects can be illustrated from Step 4 in Fig. 4.1. Therefore, the 

cascading effects in IEGS can be viewed as a cycling process. 

4.3 Modeling dynamic cascading effects in integrated electricity and 

gas systems  

Based on the illustration in section II, the cascading effects in IEGS can be 

viewed as an iterative process where the initial failures cause a sequence of cou-

pled component malfunctions, as shown in Fig. 4.2. When considering the dynam-

ic characteristics of IEGS, the cascading effects can spread over time between 

power systems and NGS. The analysis framework is given in Fig. 4.3 which mod-

els the process of temporal and spatial cascading effects under different time peri-

ods. For time period t , the re-dispatch model of NGS is conducted to determine 

the gas load shedding at time t t+   based on the current conditions of NGS and 

the power supplies of P2G facilities and EGSs obtained in power systems. Simi-

larly, the re-dispatch model of power systems can be conducted to determine the 

electric load curtailments at time t t+   in continuity to the operating conditions 

of power systems at time t  and the reduction of gas supplied to GPPs obtained in 

the NGS. The process for the re-dispatch of NGS and power system is then re-

peated for next time intervals until the stable operation of both systems. Moreover, 

the dynamic cascaded analysis model is proposed in this section to model the cas-

cading effects in IEGS. 

 
Fig. 4.2 Illustrating an iterative process of cascading effects in IEGS 
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It should be noted that the steady-state models can be utilized to represent pow-

er system operation based on several reasonable assumptions [16]. Since the tran-

sients usually fade away and the system reaches steady states again soon, the 

steady-state models are generally sufficient in the representation of system opera-

tion [17]. In this chapter, the optimal power flow (OPF) model is introduced to de-

termine the re-dispatch results of power systems at time t t+  . In contrast, gas 

flows travel at a relatively slower velocity than electricity and the gas networks 

need to take a longer time to return to stable operating conditions. Besides, a por-

tion of gas can be stored in pipelines in the short term due to the difference of gas 

pressures at both ends, which is known as line pack [16]. The consideration of gas 

dynamics (i.e. gas velocity and line pack) is imperative in the re-dispatch of NGS. 

Therefore, the optimal transient gas flow (OTGF) techniques are introduced to de-

scribe the relationship of gas pressures and gas flows between time periods t  and 

t t+  .  

 
Fig. 4.3 Framework for modeling the dynamic cascading effects in IEGS 

4.3.1 Initial failures 

The cascading effects in IEGS are often initiated by component failures caused 

by weather conditions or human errors etc. In this chapter, we consider the poten-

tial cascading effects caused by the outages of gas sources, power plants (i.e. 

CFGs, GPPs, and WTGs), coupled components, gas pipelines and etc. To model 

the initial states of components in IEGS considering random failures, the availabil-

ity vector AV  is introduced [18], which can be expressed as:  

 
 

, , , , , ,

, , , 0,1

T

is ij mg imc

is ij mg imc

a a a a

a a a a

 =  



AV L L L
  (4.1) 

where isa  is the state of gas source s  at gas node i ; mga  is the state of the generator 

at electric node m ; 
ija  is the state of the gas pipeline between nodes i  and j ; imca  

is the state of coupled component c  connected to gas node i  and electric node m . 

It can be noted that the operating state of a component can be either 1 or 0, where 

1 corresponds to the normal state and 0 corresponds to the outage state. The initial 
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states of the components can be determined according to their own failure proba-

bilities utilizing state sampling techniques [18].  

During operation, the failure probability of gas pipelines is also closely related 

to their ambient temperatures. When exposed to abnormal temperatures, the fail-

ure probability of gas pipelines can be increased. For example, the increase in am-

bient temperatures can raise the risk of corrosion, making the pipelines more easi-

ly damaged [19]. In this chapter, the failure probability of pipelines under normal 

and elevated temperatures is set based on the estimation results in reference [19]. 

4.3.2 Coupled components modeling 

The coupled relationship between NGS and power systems can be described by 

the models of coupled components. According to the conversion direction be-

tween gas and power, the coupled components in IEGS can be classified into 

GPPs, EGSs, and P2G facilities. During the process of cascading effects, the oper-

ating conditions of coupled components depend on both the energy supply and 

their reliabilities.  

1) Gas-fired power plants 

As an energy convertor to produce electricity with gas, each GPP is simultane-

ously connected to the load node i  in the NGS and generation node m  in power 

systems. According to the heating rate curve [20], there is a conversion relation-

ship between the power output of GPPs t

mgP  and the corresponding nodal gas in-

jection t

iGS , which can be expressed as:  

 ( )2 /t t t

i mg mg mg mg mgGS P P  = +  +     (4.2) 

where 
mg , 

mg  and 
mg  represent the heat rate coefficients of GPP g  at node 

m .   represents gas gross heating value. 

For time t , the power output of GPP g  at electric node m  can be calculated 

according to the amount of gas supplied to it: 

 

1/2
2 4 ( )

=
2

t

mg mg mg mg it

mg

mg

GS
P

   



 − + −   −     (4.3) 

The power output of GPPs also depends on their reliabilities. Based on the op-

erating states of GPPs obtained in (4.1), the power output of GPP g  at time t  can 

be expressed as:  

 

1/2
2 4 ( )

=
2

t

mg mg mg mg it

mg imc

mg

GS
P a

   



 − + −   −    (4.4) 

2)  Electric-driven gas sources  

EGSs need a reliable electricity supply to maintain their proper function. Gen-

erally, the power consumption of an EGS t

mkD  is related to its gas production t

ikW  

[21], which can be modeled as:  
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 t t

mk g ikD W=    (4.5) 

where 
g  is the conversion factor of EGSs.  

During the process of cascading effects, the power supply of EGSs is deter-

mined by the load curtailments at the corresponding electric nodes. Generally, in 

order to guarantee the reliable operation of NGS, the power supply of EGSs is one 

of the last candidates to be curtailed for contingencies [21]. Therefore, the operat-

ing condition of EGS k  at node i  and time t  can be determined by the electric 

load curtailments:  

 
1, if

0 if

t t t

mk mL mt

ik t t t

mk mL m

D D LC
O

D D LC

  −
= 

 − ，
  (4.6) 

where t

ikO  is 0 when the power supply of EGS is interrupted, or 1 when the EGS 

can obtain enough power supply.  

The normal operation of an EGS also depends on its risk. Considering the pow-

er supply and risk of an EGS, the operating condition t

ik  of an EGS at node i  and 

time t  can be modeled as:  

 t t

ik imc ika O =    (4.7) 

3) P2G facilities 

P2G facilities convert excessive electricity into synthetic natural gas to satisfy 

the gas consumption in NGS. The chemical process of P2G technology mainly in-

cludes two steps: 2H2O→2H2+ O2 and CO2+4H2→CH4+2H2O [22]. In the first 

step, the water is split into hydrogen and oxygen through electrolysis. The ob-

tained hydrogen carbon dioxide interacts with carbon dioxide to produce synthetic 

natural gas through electrolysis in the second step. By combining the two steps of 

the chemical process, the synthetic natural gas can be produced from electricity 

with certain energy efficiency.  

Considering the power supply and risk of a P2G facility [23], the gas produc-

tion of a P2G facility at node i  and time t  can be expressed as: 

 
2

, 2

( )t t
t P G mL m

i P G imc

D LC
W a

  −
= 


  (4.8) 

where 2P G  refers to the energy conversion factor of P2G facilities from electrici-

ty to gas.  

4.3.3 Re-dispatch model of gas systems 

Both the initial failures and malfunction of EGSs can result in the re-dispatch of 

NGS. For time t , the operating conditions of EGSs and the power supplied to P2G 

facilities can be determined according to electric load curtailments using (4.7) and 

(4.8), respectively. On this basis, the production re-dispatch of gas sources and gas 

load shedding at time t t+   can be determined using OTGF techniques.  
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The transient gas flow through one pipeline can be characterized by three equa-

tions, namely the equations of state, continuity, and motion (see Appendix A). 

These equations describe the dynamic characteristics of gas travel with the rela-

tionship between gas pressures and flow rates over time [16, 24]. Through the im-

plicit method of finite differences, the continuous equations can be discretized into 

partial difference equations in time and space (see Appendix A) [25]. On the basis, 

starting from the pressures and gas flows at time t , the pressures and flows at time 

t t+   can be determined.  

The objective function of the OTGF model is to minimize the total system cost 

at time t t+  , including gas production costs and the interruption costs of gas 

loads. 

 
1

Min ( ) ( ) ( )
N

t t t t t t

is is ik ik iL iL

i

C W C W C W+ + +

=

+ +    (4.9) 

Subject to the following constraints [16]:  

1) Continuity equation: Concerning the line pack, the incoming 
,

t t

D iQ +  and out-

going flow 
,

t t

D jQ +  of pipeline D  at time t t+   may differ due to a portion of gas 

stored in the pipe [16], which can be expressed as:  
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  (4.10) 

where R  is the specific gas constant (J/kgK);   is the absolute temperature (K); 

n  is the density (kg/m3); d  is the diameter of the pipeline (m); t  is time period 

(s); l  is the distance of the pipeline (m); sZ  is the compressibility factor.  

2) Motion equation: The gas flows through pipeline S  can be expressed as a 

function of pressure gradient, travel velocity, and pipeline characteristics. The mo-

tion equation is utilized to characterize the change of momentum acting on gas 

particles, which is shown as:  
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 (4.11) 

where ° ( ), ,, 2
t t t t t t

D i D jD ijQ Q Q
+ + += +  is the average flow; v  is the travel velocity of 

gas flow (m/s); F  is the fanning transmission factor.  

3) Nodal balance constraints: Similar to power systems, the NGS also needs to 

follow the nodal supply-demand balance. The flows in and out of gas node i  can 

be produced from different sources, including FGS with injection flow t t

isW + , 

EGS with injection flow t t

ikW + , P2G facility with injection flow 
, 2

t t

i P GW + , a com-

pressor station with inlet flow 
,

t t

D iC + , a pipeline with incoming flow 
,

t t

D iQ + , and gas 

demand t

iLW .  
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4) Gas compressor model: Similar to transformers in power systems, gas com-

pressors are built to modify the suction pressure or discharge pressure to maintain 

the pressure levels of pipelines [16]. A simplified compressor model is introduced 

to describe the relationship between the gas pressures at the incoming node i  and 

outgoing node j  of pipeline D  with a compressor:  

 , , ,

t t t t t t

cij D j D i cij D jp p p + + +      (4.13) 

5) Nodal pressure constrains:  

 
, , ,

t t t t t t

D i D i D ip p p+ + +    (4.14) 

6) Pipe flow constraints:  

 ,

t t t t t t

D D i DF Q F+ + +    (4.15) 

7) Gas production constraints:  

 0 t t t t

is isW W+ +    (4.16) 

 0 t t t t

ik ikW W+ +    (4.17) 

8) Gas load curtailment constraints:  

 0 t t t

iL iLW W+     (4.18) 

After solving the optimization model in (4.9)-(4.18), the gas load shedding 
t t

iLW +  at node i  and time t t+   can be determined. Accordingly, the gas injec-

tion t t

iGS +  supplied to GPP g  at node m  and time t t+   can be calculated as:  

 + +t t t t t

i iL iLGS W W = −   (4.19) 

Due to the nonlinearity of the motion equation in (4.11), the feasible region of 

the re-dispatch model can be nonconvex which will challenge the global optimali-

ty. Average flow squared ° °
, ,

t t t t

D ij D ijQ Q
+ +

  and pressures squared ( )
2

,

t t

D jp +  are there-

fore linearized utilizing piecewise linearization techniques (see Appendix B) [16].  

4.3.4 Re-dispatch model of power system 

Based on the determination of gas injection t

iGS  at node i  and time t , the cor-

responding power output t

mgP  of GPP g  at electric node m  can be calculated us-

ing (4.4). Besides modeling the operating characteristics of GPPs, the uncertainty 

of wind generation should also be considered in the re-dispatch of power systems. 

Considering that the power output of WTGs is determined by wind speeds, the 

multi-state model is introduced to characterize the random nature of wind speeds 

[26], which can be expressed as:  
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where 
0

t

wV  and t

w  are the mean value and variance of wind speed distribution of 

WTG w  at time t , respectively. , w

t

w hV  and , w

t

w hpr  are the wind speed and corre-

sponding probability of WTG w  for state 
wh  at time t , respectively. 

The power output , w

t

mw hP  of WTG w  at node m  and time t  can be calculated 

based on wind speeds using (4.21):  
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 (4.21) 

where 
ciV , 

coV  and 
rwV  are the cut-in speed, cut-out speed, and rated speed of 

WTG w  at time t , respectively. A , B  and C  are functions of operational param-

eters presented in [26]. rP  is the rated power of WTG w  when wind speed is be-

tween the rated speed and the cut-out speed.  

Due to the power imbalance caused by the output reduction of GPPs or initial 

failures, the generation re-dispatch of CFGs or load shedding can be determined 

using OPF techniques [27]. The objective function is to minimize the total system 

cost at time t , including power generation costs and electric load curtailment 

costs.  
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t t t t

mf mf mL m

m

C P C LC+ +

=

+   (4.22) 

Subject to the following constraints:  

1) Power balance constraints:  
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2) Generating unit limits:  

 t t

mf mf mfP P P+    (4.25) 
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 t t

mf mf mfQ Q Q+    (4.26) 

 t t

mg mg mgQ Q Q+    (4.27) 

3) Ramping rate constraints:  

 t t t t

mf mf mf mf mfP RD P P RU+−   +   (4.28) 

4) Load curtailment limits:  

 0 t t t

m mLLC D+    (4.29) 

 0 t t t

m mLQ Q+     (4.30) 

5) Line flow constraints:  

 t t

mn mnS S+    (4.31) 

6) Nodal phase and voltage constraints: 

 
t t

m m m  +    (4.32) 

 
t t

m m mV V V+    (4.33) 

After solving the OPF model in (4.22)-(4.33), the power t t t

mL mD LC +−  supplied 

to the EGSs and P2G facilities at time +t t  can be determined. Hence, the operat-

ing conditions of EGSs and gas production of P2G facility at node i  can be calcu-

lated using (4.7) and (4.8), respectively.  

4.3.5 Stopping criterion of cascading effects 

Due to the interdependence between the two systems, the re-dispatch of the 

power system and NGS will alternate at different time periods until the stopping 

criterion is satisfied. The cascading effects in IEGS stop when the operating con-

ditions of NGS and power system at time t  are identical to those at time t t+  , 

which can be expressed as:  

 ( ) ( ) ( ), , , ,l l lt t t t t t t t t

mg mg D i D i D i D iP P p p Q Q + + += =  =  =  (4.34) 

where ( )l True 1  and ( )l False 0 . Therefore, the cascading effects in IEGS will 

stop when both the NGS and power system reach stable operation states, which 

corresponds to 1 = .  

4.4 Risk analysis of IEGS considering cascading effects using 

MCS techniques  

Based on the dynamic cascaded analysis model in the previous section, a 

framework is proposed for the risk evaluation of IEGS considering cascading ef-

fects utilizing MCS techniques. The assessment flowchart is shown in Fig. 4.4. 

Details of the evaluation framework are presented as follows.  
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4.4.1 Risk indices 

Many indices have been introduced to evaluate the system and load point risk 

[2]. In this chapter, the expected energy not supplied and the loss of load probabil-

ity are introduced to evaluate the reliabilities of IEGS.  

Supposing the time t  for simulating cascading effects is from 0 to T  with t  

time step, the expected electricity not supplied ( mEENS ) and the loss of electric 

load probability (
mLOELP ) at node m  can be calculated as:  

 
1 0

ST T
t

m m

st t

EENS LC ST
= =

=   (4.35) 
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After obtaining the mEENS , the system’s EENS  can be evaluated based on 

the following equation:  
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m st t

EENS LC ST
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Likewise, the expected gas not supplied ( iEGNS ) at node i , the loss of gas load 

probability ( iLOGLP ) at node i  and system EGNS  can be defined as: 
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In addition, the occurrence of cascading effects can be judged by determining if 

additional coupled components are failed during the simulation. If the load cur-

tailments lead to the failures of additional coupled components, the subsequent 

failure order it  will increase correspondingly. Hence, the probability for the oc-

currence of cascading effects (POCE) can be calculated as:  

 ( )
1

l 2
ST

st

POCE it ST
=

=    (4.41) 

Note that 2it   corresponds to no cascading effects, whereas the cascading ef-

fects occur in IEGS for 2it  . 

4.4.2 Simulation procedures 

As illustrated in Fig. 4.4, the process for the risk evaluation of IEGS can be di-

vided into three steps. The first step is to specify the initial state of the IEGS, 

where the initial parameters of components in IEGS are set.  

The second step is the risk analysis of IEGS using MCS techniques. Based on 

the risk parameters of components, the initial failures can be obtained by random-
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ly sampling the component states according to their failure probabilities. For cer-

tain initial failures, the cascading effects between NGS and power systems are 

simulated utilizing the dynamic cascaded analysis model in section III to deter-

mine the load curtailments. Repeat the previous procedures until the stopping cri-

terion for the MCS technique is satisfied.  

 
Fig. 4.4 The framework for risk analysis of IEGS considering cascading effects 

using the MCS technique 

The stopping criterion given for the simulation is the minimum value between 

EENS  and EGNS  coefficients.  

 ( )max ( ) , ( )V EENS EENS V EGNS EGNS =  (4.42) 
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where ( )V EENS  and ( )V EGNS  are the variances of EENS  and EGNS , respec-

tively.  

Based on the load curtailments for each initial failure, the third step is to calcu-

late risk indices for both NGS and power systems using (4.35)-(4.40).  

4.5 System studies 

The IEGSs shown in Fig. 4.5 are composed of the IEEE 30-bus power system 

from [28] and the Belgian 20-node gas system detailed in [29]. The power system 

is composed of 41 branches, 21 loads, and 6 generating units. There are three 

GPPs (G1, G4, and G5), three CFGs (G2 and G3), and one WTG (G6) that consti-

tute the generation fleet. The Belgian 20-node gas system has 19 pipelines, 3 

compressors, 3 EGSs, 3 FGSs, 1 P2G facility, and 9 loads. The GPPs G1, G5, and 

G4 at electric nodes 1, 13, and 8 are supplied from the gas flow at gas nodes 10, 

16, and 6 through connections C1, C2, and C3, respectively. In addition, the EGSs 

W3, W4, and W2 at gas nodes 8, 13, and 2 obtain power supply from electric 

nodes 29, 3, and 20 through connections B1, B2, and B3, respectively. The P2G 

facility at gas node 5 produces gas with electricity from electric node 23 through 

connection B4.  

 
Fig. 4.5 Test system composed of the IEEE 30-bus power system and Belgian 20-

node gas system 

 

The physical parameters of pipelines (such as diameter and length) and com-

pressors (such as maximum compressor ratio) can be found in [29]. The ambient 

temperatures of gas pipelines are assumed as normal. The parameters for modeling 

transient gas flow are shown in Table 4.1. The detailed parameters for the produc-

tion capacity of gas sources and gas demand at different nodes are shown in Table 

4.8 of Appendix C [29]. The interruption costs of gas are set according to the data 

in [16]. The energy conversion of P2G facilities is set as 0.09 m3/ KW [23]. The 

conversion factor of EGSs is assumed to be 0.1 KW/m3 [30]. Regarding power 

systems, the detailed parameters for the generation capacity of CFGs and electric 

demand at different nodes are shown in Table 4.9 of Appendix C. The multi-state 
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model for the power output of WTGs can be found in [26]. The interruption costs 

of customers in power systems are set as 2000 $/MW [31]. The unavailability of 

gas sources and power generators is set as 0.05 and 0.07, respectively [9]. The 

stopping criterion for the MCS method is 0.02  .  

Table 4.1 Parameters for modeling transient gas flow 

Parameter Value Parameter Value 

R (J/kgK) 518.28 t (s) 300 

 (K) 281.15 v (m/s) 348.5 

n (kg/m3) 0.6106 T (h) 24 

 

The formulation of the cascading effects of IEGS is accomplished by Matlab 

R2018b. With piecewise linearization techniques, the OTGF model is converted 

into a linear programming (LP) problem, which can be solved by the Cplex solver. 

The OPF problem is formulated as a nonlinear optimization problem which is 

solved by a primal-dual interior-point solver called Matlab Interior Point Solver 

(MIPS). The study cases are tested by a computer with Intel 1.6 GHz 4-core pro-

cessor (6 MB L3 cache) and 8 GB memory.  

4.5.1 Case 1: impacts of cascading effects on nodal risk 

Three scenarios with different interdependence are modeled to evaluate the im-

pacts of cascading effects on the reliabilities of IEGS. All the GPPs G1, G5, and 

G4 are assumed to obtain gas supply from NGS in three scenarios, whereas differ-

ent connections from power systems to NGS are considered in these scenarios. 

Scenario 1 is the base scenario without considering the cascading effects in IEGS, 

where all the gas sources are FGSs that do not get electric supply from power sys-

tems. Compared to scenario 1, the gas sources W3 and W4 obtain power supply 

through connections B1 and B2 in scenario 2. In scenario 3, the gas sources W3, 

W4, W2, and P2G need to get electric supply from power systems. Therefore, dif-

ferent levels of interdependence-induced cascading effects are considered in sce-

narios 2 and 3 through connections from power systems to NGS.  

The risk indices iEGNS  (m3), iLOGLP  in NGS and mEENS  (MWh), mLOELP  

in power systems at different nodes for different scenarios are shown in Tables 4.2 

and 4.3, respectively.  

Table 4.2 Risk indices in gas systems for different scenarios 

Gas 

node 

SCENARIO A SCENARIO B SCENARIO C 

LOGLP EGNS LOGLP EGNS LOGLP EGNS 

3 0.001  296.81  0.002  461.87  0.003  1026.06  

6 0.004  1272.82  0.006  1724.68  0.010  3386.22  

7 0.003  542.43  0.006  790.58  0.009  2102.19  

10 0.005  1061.78  0.007  1582.56  0.010  3526.19  

12 0.004  724.52  0.006  985.73  0.007  1021.83  

15 0.001  466.42  0.002  824.22  0.008  1401.29  
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16 0.005  3835.86  0.017  5643.32  0.030  10886.1 

19 0.006  442.79  0.008  410.85  0.009  499.91  

20 0.007  2773.35  0.019  4324.13  0.033  5469.88  

 

Table 4.3 Risk indices in power systems for different scenarios 

Electric 

node 

SCENARIO A SCENARIO B SCENARIO C 

LOELP EENS LOELP EENS LOELP EENS 

2 0.055  2.463  0.063  4.516  0.079  6.594  

4 0.058  1.766  0.060  2.267  0.084  3.475  

6 0.000  0.000  0.000  0.000  0.000  0.000  

8 0.063  2.758  0.065  5.574  0.081  10.402  

10 0.060  1.110  0.065  1.514  0.083  2.189  

12 0.060  2.068  0.065  2.383  0.083  3.875  

14 0.060  1.274  0.065  1.383  0.083  2.270  

16 0.060  1.199  0.065  1.517  0.083  2.211  

18 0.060  0.741  0.061  0.982  0.083  1.505  

20 0.060  0.443  0.065  0.607  0.083  1.054  

22 0.000  0.000  0.000  0.000  0.000  0.000  

24 0.060  0.864  0.061  1.038  0.083  1.760  

26 0.060  0.502  0.061  0.699  0.083  1.226  

28 0.000  0.000  0.000  0.000  0.000  0.000  

30 0.060  1.001  0.065  1.267  0.083  2.133  

 

Regarding the NGS, both EGNS  and LOGLP  values increase significantly 

when considering the cascading effects between power systems and NGS. The 

system EGNS  values in NGS are 1.141×104 m3, 1.675×104 m3, and 2.932×104 m3 

for scenarios 1, 2, and 3, respectively. Moreover, it can be noted that there are 

very large differences between risk indices at different nodes. The iEGNS  at node 

16 is the largest among all the gas nodes, whereas the iEGNS  at node 19 is rela-

tively small for all scenarios. This is mainly because the gas loads at nodes 10, 16, 

and 6 are under interruptible contracts with GPPs and will be firstly curtailed in 

contingency states.  

Regarding the power system, it can be seen from Table 4.3 that the EENS  and 

LOELP  values increase significantly when considering the cascading effects in 

IEGS. The system EENS  is 29.50 MWh for scenario 1 and increases to 72.49 

MWh for scenario 3. In addition, there are also large differences between mEENS  

values at different electric nodes. The values of mEENS  at nodes 2 and 8 are rela-

tively large, which are 6.594 MWh and 10.402 MWh for scenario 3, respectively. 

In contrast, the mEENS  values at nodes 6, 22, and 28 are close to zero for all sce-

narios. Moreover, the variation trend of mLOELP values at each node is in accord-

ance with that of mEENS  values.  
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Table 4.4 Impacts of cascading effects on the risk of IEGS 

Indices SCENARIO 1 SCENARIO 2 SCENARIO 3 

System EENS (MWh) 29.50 42.26 72.49 

System EGNS (m3) 11416.7 16747.9 29319.7 

POCE 0 0.034 0.072 

 

To investigate the impacts of cascading effects on the reliabilities of IEGS, the 

POCE indices for different scenarios are calculated, as shown in Table 4.4. It can 

be noted that the increase of interdependence between NGS and power systems 

can increase the risk of the cascading effects occurring in IEGS. The values of 

POCE  in scenarios 1, 2, and 3 are 0, 0.034, and 0.072 respectively. Although the 

probability for the occurrence of cascading effects is relatively small for scenario 

3, their impacts on the reliabilities of IEGS can be significant. It is seen from Ta-

ble 4.4 that both the system EENS and EGNS increase sharply from scenario 1 to 

scenario 3, indicating the reliabilities of IEGS are significantly reduced. There-

fore, the cascading effects in IEGS can be regarded as high-impact and low-

probability events. 

Moreover, the correlations between load curtailments and cascading iteration 

number it  for each simulation time are investigated, as shown in Fig. 4.6. One of 

the observations is that both the electric and gas load curtailments are positively 

related to it . Compared to the scenarios where no cascading effects ( 2it  ) are 

considered, the electric and gas load curtailments increase nearly 3 times for 

3it  . Therefore, more load curtailments may be caused during contingencies 

when considering the cascading effects between two systems, which can signifi-

cantly reduce the reliabilities of IEGS.  

 
Fig. 4.6 Correlations between load curtailments and cascading iteration numbers 

4.5.2 Case 2: test on the larger scale systems 

In order to validate the effectiveness of the proposed technique on larger test 

systems, two scenarios based on systems with different dimensions are considered 
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in this case. The power systems used in scenarios A and B are the modified IEEE 

118-bus [32] and IEEE 300-bus systems [33], respectively. It is assumed that sev-

en GPPs at electric nodes 19, 46, 59, 70, 87, 103, and 111 in scenario A, at electric 

nodes 19, 80, 132, 156, 199, 222, and 262 in scenario B are supplied from the gas 

flow at gas nodes 3, 6, 10, 12, 15, 16 and 20 of NGS, respectively. On the other 

hand, five EGSs at gas nodes 1, 2, 5, 8, and 13 obtain power supply from electric 

nodes 108, 102, 23, 73, and 113 in scenario A, electric nodes 87, 155, 232, 168, 

and 285 in scenario B, respectively. The generators at electric nodes 8, 3 6, 56, 91, 

and 116 in scenario A, at electric nodes 117, 135, 169, 253, and 295 in scenario B 

are assumed as WTGs, whose power output model can be found in [26]. The de-

tailed parameters of NGS in these two scenarios are the same as those of the pre-

vious case. The risk parameters of CFGs and GPPs can be found in [9]. Moreover, 

the stopping criterion for the MCS method is 0.02  . 

 

 

Table 4.5 Risk indices in power system for scenarios A and B 

Scenario A (118-bus system) Scenario B (300-bus system) 

Node EENS Node EENS Node EENS 

4 37.310  4 37.310  4 37.310  

12 0.248  12 0.248  12 0.248  

20 0.788  20 0.788  20 0.788  

28 0.347  28 0.347  28 0.347  

39 18.483  39 18.483  39 18.483  

47 35.121  47 35.121  47 35.121  

51 1.403  51 1.403  51 1.403  

57 0.239  57 0.239  57 0.239  

67 18.955  67 18.955  67 18.955  

76 3.878  76 3.878  76 3.878  

86 8.205  86 8.205  86 8.205  

97 6.316  97 6.316  97 6.316  

103 0.099  103 0.099  103 0.099  

112 0.179  112 0.179  112 0.179  
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Fig. 4.7 Risk indices of NGS for scenarios A and B 

 

Table 4.6 System risk indices of IEGS in scenarios A and B 

Scenarios System EENS (MWh) System EGNS (m3) POCE 

A (118-bus system) 1163.17 37833.84 0.046 

B (300-bus system) 1724.78 24199.08 0.011 

 

The risk indices mEENS  (MWh), mLOELP  in power systems and iEGNS  (m3), 

iLOGLP  in NGS at different nodes for scenarios A and B are given in Table 4.5 

and Fig. 4.7, respectively. Similar to case 1, there also exist significant differences 

between risk indices at different nodes in both the power system and NGS. Table 

4.6 lists the system risk indices of IEGS for scenarios A and B. Although the value 

of POCE  in scenario A increases slightly compared to scenario B, the system 

ENGS in scenario A can be significantly larger than that in scenario B. The find-

ings imply that the risk of IEGS can be significantly reduced considering cascad-

ing effects.  

4.5.3 Computation time of risk evaluation 

The computation time of the risk evaluation of IEGS for different scenarios in 

cases 1 and 2 is shown in Table 4.7. It can be noted the computation time of sce-

nario A is smaller than that of scenario C in case 1 since the cascading effects of 

IEGS are considered in scenario C. Moreover, it can be noted that the computation 

time of the MCS method for obtaining the results increases a lot with the increase 

in system size. The computation time in scenarios A and B of case 2 is 2.5 and 3.9 

times that in scenario C of case 1, respectively. Since the risk evaluation of IEGS 

considering cascading effects can be performed offline, the computation time of 

larger systems is acceptable in real applications [34]. Moreover, the application of 

modem computers and dedicated machines can also lead to the reduction of com-

putation time for risk evaluation of large-scale systems [2]. 

Table 4.7 System risk indices of IEGS in scenarios A and B 

Cases  Scenarios Computation time (s) 
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Case 1 

Scenario A  6204.68 

Scenario B  8265.93 

Scenario C  13313.87 

Case 2 
Scenario A 33543.02 

Scenario B 52659.72 

4.6 Conclusion 

The interdependence between NGS and power systems entails the need to inte-

grate the cascading effects into the risk analysis of IEGS. This chapter proposes an 

approach to evaluate the reliabilities of IEGS considering the cascading effects. 

The dynamic cascaded analysis model is developed to describe the temporal and 

spatial process of cascading effects considering different dynamic behaviors be-

tween power systems and NGS. Moreover, the simulation framework for the risk 

evaluation of IEGS considering the interdependence-induced cascading effects is 

proposed by combining the dynamic cascaded analysis model and MCS tech-

niques. Furthermore, the impacts of cascading effects on the nodal reliabilities of 

IEGS are evaluated in two cases. We find that the reliabilities of IEGS can be sig-

nificantly reduced when considering dynamic cascading effects between NGS and 

power systems. The impacts of cascading effects on the risk of IEGS can differ at 

different nodes. Besides, the results reveal the high-impact and low-probability 

characteristics of cascading effects.  

Appendix A 

Generally, the transient gas flow in pipelines can be described by the equations 

of state (4.43), continuity (4.44) , and motion (4.45):  
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where p  is gas pressure (Pa); M  is the mass flow rate (kg/s); l  is the distance of 

pipelines (m); A  is the pipeline’s cross-sectional area (m2).  

In real operation conditions, the adoption of some simplification hypotheses in 

(4.45) can be accepted. The term 2 2

2

p v M

l A p





 represents the force of gravity which can 

be simplified for horizontal pipes [16]. The two terms M
p

t




 and 

2 2v M

A l





 describing 

the gas inertia and kinetic energy, respectively, can be neglected since they only 

account for less than 1% of the solution in (4.45) under normal conditions [16]. 

Instead of using mass flow rate M , the volumetric flow rate Q  (m3/s) is intro-
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duced by 
nQ M =  [24]. Therefore, the continuity and motion equations of pipe-

lines can be written as: 
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  (4.46) 
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The implicit method of finite differences is utilized to discretize the continuity 

and motion equations in time and space. As shown in Fig. 4.8, the pipeline with 

length l  is divided into segments with length l . Let 
,

t

D iQ  and 
,

t

D ip  denote the 

pressure and flow rate at the beginning point i  of pipeline D  at time t , respective-

ly. Then at time t t+  , a finite difference method can be used to resolve the re-

spective values of pressures and flow rates 
,

t t

D ip +V  and 
,

t t

D iQ +V . Therefore, the continu-

ity and motion equations of pipelines can be approximated by the difference 

equations, as shown in (4.10) and (4.11), respectively.  

 
Fig. 4.8 Finite difference method for determination of transient flow equations 

The determination of time step t  used in the finite difference method needs 

to weigh up many factors, such as the calculation time, the accuracy of the results 

and etc. [35] Taking into these factors, the time step t  is usually selected as 

300s [16]. 

Appendix B 

Corresponding to the motion equation in (11), the average flow squared 

° °
, ,

t t t t

D ij D ijQ Q
+ +

  and pressures squared ( )
2

,

t t

D jp +  need to be linearized with piecewise 

linearization techniques [16]. Taking ° °
, ,

t t t t

D ij D ijQ Q
+ +

  as an example, it can be re-

garded as the general form ( )h x x x=   defined on an interval  1 2,L L L= , where 

°
,

t t

D ijx Q
+

= . Regarding gas flow rates ° ,

t t

D ijQ
+

, the operating interval  1 2,L L  can be de-

termined by the pipeline capacity. By dividing the operating interval at the demar-

cation points 1 1 2z ZL X X X L=     =L L  with corresponding function values 
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( )zh X , the nonlinear function ( )h x x x=   can be separated into 1Z −  linear 

segments. On this basis, the method to approximate ( )h x  can be formulated as 

follows: 

  
1

1 1

1

( ) ( ) ( ) ( )
Z

z z z

z

h x h X h X h X 
−

+

=

 + −   (4.48) 

 ( )
1

1 1

1

Z

z z z

z

x X X X 
−

+

=

= + −   (4.49) 

 1 , {1, ,Z 2}z z z z  +    −L   (4.50) 

 0 1, {1, ,Z 1}z z   −L   (4.51) 

where z  denotes continuous variable representing the portion of pipeline flow. z  

is binary variable to force that if an interval  1,z zX X−
 is chosen, all intervals to its 

left must be completely used. 

Appendix C 

Tables 4.8 and 4.9 list the production capacity of gas sources and gas demand at 

different nodes in NGS [29], the generation capacity of CFGs, and electric de-

mand at different nodes in power systems, respectively. 

Table 4.8 Production capacity of gas sources and gas demand at different nodes in 

NGS 

Node 
Source capacity/ Gas 

demand (104 m3/h) Node 
Source capacity/ Gas 

demand (104 m3/h) 

1 4.329/0 10 0/2.652 

2 5.250/0 13 2.833/0 

3 0/1.632 14 2.433+2.291/0 

5 3.833/0 15 0/2.853 

6 0/1.681 16 0/6.507 

7 0/2.190 19 0/0.092 

8 6.255/0 20 0/0.799 

 

Table 4.9 Generation capacity of CFGs and electric demand at different nodes in 

power systems 

Node 
Generation capacity/ 

Electric demand(MW) Node 
Generation capacity/ 

Electric demand(MW) 

2 140/21.7 16 0/3.5 

3 0/2.4 14 0/9.0 

4 0/7.6 18 0/3.2 

5 100/94.2 19 0/9.5 

7 0/22.8 20 0/2.2 

8 0/30 21 0/17.5 

9 0/0 23 0/3.2 

10 0/5.8 24 0/8.7 
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12 0/11.2 26 0/3.5 

14 0/6.2 29 0/2.4 

15 0/8.2 30 0/10.6 
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5 Definitions and Risk Modeling of Two-
Interdependent-Performance Multi-State System 
and its Application for CHP units 

5.1 Introduction 

The above three chapters mainly focus on the risk evaluation in the transmis-

sion-side of multi-energy systems, i.e. integrated electricity and gas systems. On 

the distribution side, the risk of integrated electricity and heating systems can also 

be an important problem, which is closely related to the operation of coupled 

components, i.e. combined heat and power (CHP) units. To analyze and evaluate 

the risk of the CHP units, the multi-state system (MSS) models can be adopted in 

this chapter. Recently, the MSS models have been widely used in the risk evalua-

tion of real-life engineering systems [1-3]. In the MSS theory, a system can per-

form its intended task with various performance rates. For example, a wind turbine 

has a single task to perform, i.e., producing electricity, and there could be different 

performance rates corresponding to the turbine’s different available capacities de-

pending on the wind speed. Hence, an MSS can be represented by a finite number 

of states and the corresponding probabilities, representing different performance 

rates that can be achieved. The basic concepts and comprehensive presentations of 

the MSS theory and its applications can be found in [4-6]. Moreover, MSS models 

are very flexible and can be extended to handle different situations [7]. The MSS 

modeling in which the surplus performance of a component can be shared with 

other components was proposed in [8]. The MSS models used in the k -out-of- n 

system structure have also been proposed and well developed in [9-17]. There are 

also some studies conducted on developing algorithms for analyzing the risk of the 

MSS models [18, 19].  

In these previous researches, it is usually assumed that the MSS only has one 

intended task to complete. Therefore, the risk of the MSS can be sufficiently 

measured by a single performance variable. The risk of a wind turbine, for exam-

ple, can be measured by a single performance variable, i.e., the capacity of its 

electric power output. However, there are many systems designed to complete dif-

ferent tasks simultaneously. Therefore, different performance variables are neces-

sary for indicating the risk of such systems. A new multi-state vector-k-out-of-n 

system model has been proposed in [20], which can describe the stochastic behav-

ior of a wide class of multiple line flow transmission systems, and production and 

service systems with multiple resource consumption. Authors in [21] have pre-

sented the multi-performance multi-state system (MPMSS) model, as another ex-

ample of the performance vector application. In [21], the performance rate of an 

MPMSS in each state is represented by a performance vector. Each element in the 

performance vector corresponds to the capacity of a performance measure in this 

state. The representation of the performance variables in the vector form allows us 

to analyze different performances separately and independently. Therefore, the 
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risk evaluation technique developed in the single-performance MSS can be direct-

ly used in the MPMSS models.  

However, the performance vector representation cannot take into account the 

interdependency between different performance variables, and therefore does not 

apply to the two-interdependent-performance MSS (TIP-mss). The TIP –MSSs are 

emerging with the development of integrated energy systems (or referred to as 

multi-carrier systems, energy hubs) [22-25]. The widely used combined heat and 

power (CHP) units produce both electricity and useful heat for consumers. Hence, 

the CHP-based systems need to consider two performance variables of electric 

power and heat power, which are influenced by each other. The operation of such 

a TIP-MSS is usually constrained by a two-dimension feasible operating region 

(FOR) specific to the state, which is enclosed by the operating constraints of the 

two performance variables. For example, the FOR of the CHP unit at its working 

state could be a quadrilateral area describing the constraints of its electric power 

capacity and heat power capacity [26, 27]. In other words, we can control the TIP-

MSS operation, and correspondingly the system performance vector in each state 

can be freely chosen within the FOR in response to the load requirements. Moreo-

ver, the two performance variables are not always positively related within the 

FOR. Instead, there is usually a trade-off between one performance and the other. 

Hence, it is significant to find an object to represent the performance rates of the 

TIP-MSS in different states, similar to the concept of “capacity” in the single-

performance MSS. In this chapter, the performance rate of the TIP-MSS in each 

state is represented by a performance trade-off curve corresponding to the upper 

boundary of the FOR. The upper boundary of the FOR is defined as a performance 

vector set. Given any performance vector within the FOR, a performance vector in 

the set can be found which is greater than or equal to it.   

Concluded from the above discussion, a new modeling method should be de-

veloped for risk evaluation of the TIP systems. This chapter develops the TIP-

MSS model for risk evaluation of such systems. In the TIP-MSS context, the sys-

tem performance rate in each state is represented by the performance trade-off 

curve corresponding to the upper boundary of its FOR specific to this state. Then, 

the technique for risk evaluation of the TIP-MSS is proposed based on the UGF 

method. UGF is an effective approach for the system state enumeration and there-

fore has been widely used in the MSS risk and performance evaluation [28-30]. 

However, the well-known UGF method is more applicable to one-performance 

MSS or the MPMSS in which the interdependency between different performance 

variables is not considered. In this chapter, the classic UGF method is extended to 

handle the TIP-MSS models, and the concept of TIP-UGF is proposed. Different 

TIP-UGF composition operators, corresponding to the combination/intersection of 

the trade-off curves, are defined for analyzing the risk of TIP-MSS with paral-

lel/series structures. Based on the TIP-UGF, the performance distribution of a 

TIP-MSS consisting of multiple components can be obtained. Moreover, the 

availability criterion based on the TIP-UGF representation is also proposed. It 

should be noted that the aleatory and epistemic uncertainties are not considered in 
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this chapter. However, reference [31] provides a possible solution to generalize 

the risk model to capture those uncertainties. 

This chapter includes research related to definitions and the risk modeling of 

two-interdependent-performance multi-state systems by [32]. 

5.2 Definition of Two-Interdependent-Performance Multi-State 

Components 

A two-interdependent-performance multi-state (TIP-MS) component has two 

intended tasks to complete and therefore is characterized by two performance var-

iables. Moreover, the two performance variables are interdependent on and influ-

enced by each other. In each state, values of the two interdependent performance 

variables follow a set of constraints, which form the FOR of this state. Following 

that, the formal definition of a TIP-MS component is given.  

Definition 1: TIP-MS component. Component i has two performance variables 

denoted by ( ) ( )( )1 2
,i i i=W W W  . The component has M+1 states, such that 

0 ij M   where 0ij =  is the complete failure state and 
ij M=  is the perfect 

performing state. The two performance variables in state ij  are represented by 

( ) ( )( )1 2
, , ,= ,

i
i i

i j i j i jW WW . Moreover, ( ) ( )( )1 2

, ,,
i ii j i jW W is not a deterministic performance vec-

tor. Instead, ( ) ( )( )1 2

, ,,
i ii j i jW W can be freely chosen as any performance vector as long as

 
( ) ( )( )1 2

, , ,,
i i ii j i j i jW W  .

, ii j denotes the trade-off curve of the two performance varia-

bles in state ij , which corresponds to the upper boundary of the FOR specific to 

this state. The upper boundary of the FOR is defined as the smallest performance 

vector set ,
ii j . Given any performance vector ( ) ( )( )1 2

, ,,
i ii j i jW W  within the FOR, a per-

formance vector in the set ( ) ( )( )1 2

, , ,,
 


i i ii j i j i jW W  can be found, satisfying

( ) ( )( ) ( ) ( )( )1 1 2 2

, , , ,&&
 
 

i i i ii j i j i j i jW W W W .  
 

Definition 1 illustrates that the risk of the TIP-MS component in any state is 

represented by a performance trade-off curve. It is because only the performance 

trade-off curve can give a full picture of the availability of the component, as evi-

denced in Example 1.  

Example 1 Here we consider an extraction-condensing CHP unit consisting of 

two gas turbines of the same. Since CHP is used to produce electricity and useful 

heat for consumers, the risk of the CHP unit should be measured by two perfor-

mance variables of available heat power capacity and available electric power ca-

pacity. For each turbine, the maximum heat power and electric power capacities 

are 25MW and 21MW, respectively. Moreover, there are three states of the CHP 

unit: state 0 where both turbines fail; state 1 where one turbine works and state 2 

where both turbines work perfectly.  
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The FORs of the CHP unit in the three states are shown in Fig. 5.1, which are 

based on the typical heat-electricity FOR of an extraction condensing CHP unit 

[33]. In Fig. 5.1, ( )1

iW and ( )2

iW  represent the heat power and electric power capac-

ities, respectively. 
( )1

, ii jW and 
( )2

, ii jW represent the heat power and electric power ca-

pacities of the unit in state ji; 
( ) ( )1 ,Max 2 ,Max

, , and 
i ii j i jW W denote the maximum values of 

heat power and electric power in state ji, where ji=2,1,0.  

The two performance variables, i.e, heat power and electric power are both zero 

in state 0. The performance variables in state 1 and state 2 are both constrained by 

a FOR. The quadrilateral FORs in state 1 and state 2 are enclosed by four bounda-

ry curves, corresponding to four operating constraints, including the electric power 

output constraint, minimum fuel constraint, maximum fuel constraint, and maxi-

mum heat extraction constraint. The trade-off curves in state 1 and state 2 are re-

spectively represented by the solid green segment and solid blue segment.  

 
Fig. 5.1 FORs of the extraction-condensing CHP unit in different states [33] 

 

Take state 2 for example. The performance vector in state 2 can be (0,42) if 

0MW heat power and 42MW electric power are required. We can also control the 

CHP unit operation and adjust the performance vector as (50,34) if the load re-

quirements are below (50,34). There are infinite combinations of the available 

heat power and electric power within the FOR of state 2, corresponding to infinite 

performance vectors ( ) ( )( )1 2

,2 ,2,i iW W , which can be chosen in this state. Therefore, we 

need to consider a continuous performance trade-off curve, rather than a certain 

performance vector, to adequately describe the risk of the CHP unit in a state.   

Following Definition 1, the state space of the CHP unit in Example 1 can be 

expressed as:  
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 

( ) ( ) 
( )

( ) ( )

( )

( ) ( )

1 2 1 2 1 2

,0 ,0 ,0 ,1 ,1 ,1 ,2 ,2 ,2

1 2

,0 ,0 ,0

1 1

,1 ,2

,1 ,21 2 1 2

,1 ,1 ,2 ,2

, ; , ; ,

where

0; 0

0 25 0 50

6.25 131.25 6.25 262.5

i i i i i i i i i

i i i

i i

i i

i i i i

W W W W W W

W W

W W

W W W W

  

 = = =

         
 =  =   

+  = +  =      

  (5.1) 

When the two performance variables of the TIP-MSS are positively correlated, 

there is no trade-off between the two performance variables. Hence, we can use a 

certain performance vector to replace the performance trade-off curve to represent 

the performance rates of the TIP-MSS. The elements of the performance vector 

respectively correspond to the maximum values of the two performance variables. 

Such systems characterized by two positively correlated performance variables 

can be viewed as a particular case of the TIP-MSS.   

Example 2 Here we consider a back-pressure CHP unit, whose heat power ca-

pacity is in proportion to its electric power capacity [34]. In other words, the two 

performance variables of the back-pressure CHP unit are linearly correlated. As-

suming the back-pressure CHP unit has three states: 0, 1, and 2. State 0, state 1, 

and state 2 have an available heat power capacity of 0MW, 30MW, and 50MW, 

respectively. The heat-to-electricity coefficients in state 1 and state 2 are assumed 

to be 1.25 and 1.67, respectively. The FORs of the CHP unit in the three states are 

shown in Fig. 5.2.  

 
Fig. 5.2 FORs of the back-pressure CHP unit in different states 

 

As shown in Fig. 5.2, the maximum values of the two performance variables in 

state 1 are 
( )1 ,Max

,1 30iW = and 
( )2 ,Max

,1 18iW = , respectively. Hence, the performance 

vector ( ) ( )( ) ( )1 2

,2 ,2, 30,18i iW W = can be viewed as the “capacity” of the component in 

state 1 and therefore can represent the performance rate of this state. Likewise, 
( ) ( )( ) ( )1 2

,2 ,2, 50,40i iW W = can represent the performance rate of the component in 

state 2.  
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Follow the general form of expression as (5.1) the state space of the back-

pressure CHP unit in Example 2 is expressed as:  
( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) 1 2 1 2 1 2

,0 ,0 ,1 ,1 ,2 ,2, 0,0 ; , 30,18 ; , 50,40i i i i i iW W W W W W= = =   (5.2) 

Based on whether conversions between the two performance variables are con-

sidered, two models of strong-monotonic-increasing TIP-MSS are defined.  

Definition 2 Strong-monotonic-increasing TIP-MSS. For a strong-monotonic-

increasing TIP-MSS, the maximum value of each performance variable in state 
sj  

must be not less than those in a lower state. In other words, giving any 
( ) ( )( )1 2

, -1 , -1 , -1,
s s ss j s j s jW W  , there is a ( ) ( )( )1 2

, , ,,
s s ss j s j s jW W   satisfying:  

 ( ) ( )( ) ( ) ( )( )1 1 2 2

, , -1 , , -1& & 1
s s s ss j s j s j s j sW W W W j M   = L    (5.3) 

Definition 3 Monotonic-increasing TIP-MSS with the weighted-sum conver-

sion. Here we consider the same TIP-MSS as in Definition 2. The difference is 

that the two performance variables can be converted to each other, and therefore 

can be considered as a whole. The weighting-multipliers of the two performance 

variables are ( )1

sc and ( )2

sc , which scale their importance. A weighted sum of the 

two performance variables for the component in state sj can be evaluated as:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )sum ,Max 1 1 2 2 1 2

, , , , , ,Max , for all ,
i s s s s si j s s j s s j s j s j s jW c W c W W W=  +    (5.4) 

For a monotonic-increasing TIP-MSS with weighted-sum conversion, the max-

imum value of weighted sum in state sj  must be not less than the value at a lower 

state, so that: 

 
( ) ( )sum ,Max sum ,Max

, , -1 1
s ss j s j sW W j M  = L   (5.5) 

 

Fig. 5.3. Strong-monotonic-increasing TIP-MSS and monotonic-increasing TIP-

MSS with weighted-sum conversion 

 

Example 3 Here we develop a TIP-MSS s consisting of two CHP units. The 

TIP-MSS has four states, which are state 3, state 2, state 1, and state 0. The per-

formance trade-off curves for the four states are shown in the left part of Fig. 5.3. 
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As we can see, the TIP-MSS s is not a strong-monotonic-increasing TIP-MSS. 

The criterion is not satisfied when we compare state 1 and state 2. The perfor-

mance variables in state 1 can be (0,42) while there is no available performance 

variable vector in state 2 satisfying: 

 ( )( ) ( )( ) ( ) ( )( )1 2 1 2

,2 ,2 ,2 ,2 ,20 && 42s s s s sW W W W  ，    (5.6) 

Then, we consider the same TIP-MSS s and equip it with a heat pump (electric-

ity to heat) and a thermoelectric generator (heat to electricity). In this case, the two 

performance variables (electric power and heat power) can be converted to one 

another. Assuming the weighting-multipliers of the two performance variables are 

1 and 0.8, respectively. Then, we can calculate the maximum weighted sum of the 

two performance variables for the four states, which are 156, 18.8,72.2, and 0, re-

spectively. In this case, the TIP-MSS s is considered as a monotonic-increasing 

TIP-MSS with the weighted-sum conversion.   

5.3 The Two-Interdependent-Performance Universal Generating 

Function Technique 

A two-interdependent-performance multi-state system (TIP-MSS) consists of 

many components. Each component can have different performance levels corre-

sponding to different states. The random process describing the transition of dif-

ferent states of the component can be modeled as a Markov chain (MC) [35]. As-

suming that only long-term risk analysis is performed to assess the risk of the TIP-

MSS, the component state probabilities can be obtained by solving several alge-

braic equations in the MC. This part is beyond the scope of the study.  

In this chapter, it is assumed that the state probabilities of the components are 

known. Then, the performance distribution of each component is represented in 

the UGF form. Based on the proposed UGF combination operators, the perfor-

mance distribution of the entire TIP-MSS can be obtained based on the UGF of its 

components.  

The UGF technique is used to find the entire performance distribution of the 

MSS based on the performance distributions of its components. However, the tra-

ditional UGF method is more applicable to one-performance MSS or the MSS 

whose different performance variables are independent of each other. Therefore, 

the conventional UGF method is extended in this chapter, and the concept of TIP-

UGF is proposed.  

The traditional UFG representation for a single-performance MS component is 

generally formed as: 

 ,

,

0

( ) i

i

i

M
i j

m i j

j

Q
u z p z

=

=     (5.7) 

As shown in (5.7), the UGF representation gives the probability (
, ii jp ) and 

performance rate ( , ii jQ ) of the component over its M+1 states.   
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Likewise, the general form of the TIP-UGF for the TIP-MS component i is giv-

en as: 

 ( ) ,

,

0

i

i

i

M
i j

i i j

j

u z p z
=

= 
W    (5.8) 

The above function is the z -transform of random performance vector. Like the 

single-performance UGF, the function (5.8) represents the probability mass func-

tion of the TIP-MS component, with , ii jW and 
, ii jp in the polynomial form corre-

sponding to the performance rate and the corresponding probability for state ij

[36].  

The performance rate , ii jW is represented by the performance trade-off curve 

( ) ( )( )1 2

, , ,,
i i ii j i j i jW W  . Hence, (5.8) can be restated as: 

 ( )
( ) ( )( )1 2

, , ,,

, ,

0 0

,
i i ii

i i

i i

M M
i j i j i ji j

i i j i j

j j

W W
u z p z p z

= =


=  =  

W
   (5.9) 

In the following paragraphs, the TIP-UGF form (5.9) is simplified as:  

 ( ) ,

,

0

i

i

i

M
i j

i i j

j

u z p z
=


=     (5.10) 

Then, different composition operators, corresponding to the exten-

sion/intersection of the FORs, are defined for analyzing the TIP-MSS with paral-

lel/series structures.  

Based on the TIP-UGF technique, the performance distribution of a TIP-MSS 

containing multiple components can be     obtained:  

 

( ) ( ) ( )( )

1

1

1 1

1

, ,1,

1, , ,

0 0 0

,

,

0

, ,

,..., ,...,i n

i n

n

s n

M M M
i j n jj

j i j n j

j j j

X
s x

s x

x

u z u z u z

p z p z p z

p z

= = =

=

= 

  
=      

 


= 

  



L

   (5.11) 

The composition operator includes the parallel operator 
ser
 and the series op-

erator
ser
 . X+1 represents the number of the system state, 

,s xp is the probability of 

state x, while 
,s x denotes the trade-off curve constraining the performance varia-

bles ( ) ( )( )1 2

, ,,s x s xW W for this state.  

The parallel operator 
ser
 and the series operator

ser
 are introduced in subsections 

5.3.1, and 5.3.2, respectively.  
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5.3.1. Risk modeling of the system with a parallel structure  

The parallel composition operator 
par
 is defined to analyze the system with a 

parallel structure. Similar to that in the well-known single-performance UGF theo-

ry [37], 
par
 can be illustrated as: 

  

( ) ( ) ( )

( )

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 21, 2
par

1, 2,

1, 2,
par

0 0

1, 2,

1, 2,

0 0

par ,

i i

i i

i i

i i

i i

i i

i is i i

M M
i j i j

i j i j

j j

M M
i j i j

i j i j

j j

u u z u z

p z p z

p p z

= =

= =

= 

    
=         
   

 
= 

 

 

   (5.12) 

As shown in (5.12), a special function ( )par  is used to combine the perfor-

mance trade-off curves of components connected in parallel. The function corre-

sponds to the “addition of two performance variables” in the single-performance 

UGF. The following paragraphs illustrate the function ( )par  . Suppose a TIP-MSS 

s consists of two components i1 and i2 connected in parallel. The two components 

are respectively in state ji1 and ji2, and their performance rates in their states are re-

spectively represented as: ( ) ( )( )
1 1 1

1 2

1, 1, 1,,
i i ii j i j i jW W   and ( ) ( )( )

2 2 2

1 2

2, 2, 2,,
i i ii j i j i jW W  . 

Then, the performance rate of the system s in this combination can be expressed as
( ) ( )( )1 2

, , ,,
s s ss j s j s jW W  where ( )

1 2, 1, 2,par ,
s i is j i j i j =   . The function ( )par  refers to the 

combination of trade-off curves. Mathematically, ( )par   obtains the expression of 

the ( ) ( ) ( ) ( )( )
1 2 1 2

1 1 2 2

1, 2, 1, 2,,
i i i ii j i j i j i jW W W W+ + given the trade-off curve functions of 

( ) ( )( )
1 1

1 2

1, 1,,
i ii j i jW W and ( ) ( )( )

2 2

1 2

2, 2,,
i ii j i jW W .  

Example 4 There are two extraction-condensing CHP units i1 and i2 at bus i. 

Each unit has two states, including the best-performing state 1 and complete-

failure state 0. Therefore, the TIP-UGF of CHP unit i1 can be defined as the fol-

lowing polynomial: 

 01,1

1 1 1

i

i i iu A z U z


=  +    (5.13) 

where 1iA and 1iU are the availability and unavailability of the CHP unit, respec-

tively. In the best-performing state, its performance is represented by the 
1,1i . 

The trade-off curve in state 0 is simply referred to as ‘0’ here.  

Similarly, the TIP-UGF of CHP unit i2 is defined as: 

 2 1 0

2 2 2
i

i i iu A z U z


=  + ，   (5.14) 

In their TIP-UGF representations, 
1,1i and 

2,1i are mathematically expressed 

as:  
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( )

( ) ( )

( )

( ) ( )

1 1

1 1,1 1 2 2,1 2

1,1 2,11 2 1 2

1,1 1 1,1 1 2,1 2 2,1 2

;
i i i i i i

i i

i i i i i i i i

a W b a W b

W c W d W c W d

         
 =  =   

+  = +  =      

   (5.15) 

Moreover, it is assumed that: 

 
1 2i ic c    (5.16) 

Under such circumstances, the TIP-UGF of the system s consisting of i1 and i2 

can be obtained as:  

 

( ) ( )

( ) ( )
( )

1,1 2,1

1,1 2,1

1 2
par

0 0

1 1 2 2
par

1,1 2,1

1 2 1 2 2 1

0,3 ,3 ,3

1 2 1 2 2 1 1 2

=

par ,

i i

i i

s i i

i i i i

i i

i i i i i i

s s s

i i i i i i i i

u u z u z

A z U z A z U z

A A z A U z A U z

A A z A U z A U z U U z



 
=  +    + 

   
=  +  + 

  
=  +  +  + 

  (5.17) 

In (5.17), 
,3s denotes the performance trade-off curve of the system s when 

the two CHP units are both at their best-performing state. Moreover,
,3s can be 

expressed as: 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,,3 1,1 2,1

1

1 2 ,3 1 2

1 2 2

,3 2 ,3 1 2 2 ,3 2

1 2 2

,3 1 ,3 1 2 1 2 1 1 2 ,3 1 2

par =

+ +

+ , when

+ ,when

s i i

i i s i i

s i s i i i s i

s i s i i i i i i i s i i

a a W b b

W c W d d a W b

W c W d d c c b a b W b b

 =  

  
  

= +   
 

= + − − +   + +  

(5.18) 

   

where 
( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2

,3 1 1 2,1 ,3 1,1 2,1,s i i s i iW W W W W W= + = +， . 

The function ( )par  , in this case, is illustrated in Fig. 5.4. As shown in Fig. 5.4, 

the trade-off curves of the two CHP units are spliced together to form the trade-off 

curve of the system s. 
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Fig. 5.4. Illustration of combining the states of two CHP units in parallel 

5.3.2. Risk modeling of the system with series structure  

The series composition operator 
ser
 is defined to analyze the system with series 

structure, which can be illustrated as: 

  

( ) ( ) ( )

( )

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 21, 2
ser

1, 2,

1, 2,
ser

0 0

1, 2,

1, 2,

0 0

=

ser ,

i i

i i

i i

i i

i i

i i

s i iS i i

M M
i j i j

i j i j

j j

M M
i j i j

i j i j

j j

u u u z u z

p z p z

p p z

= =

= =

= 

    
=         
   

 
= 

 

 

   (5.19) 

As shown in (5.19), a special function ( )ser   is used to find the performance 

trade-off curve of the system when combining the states of two independent com-

ponents connected in series. Mathematically, the function represents the “intersec-

tion of the trade-off curves”. It is assumed that there is a TIP-MSS s consisting of 

two components i1 and i2 connected in series. The two components are respective-

ly in state ji1 and ji2, and their performance trade-off curves are represented as: 
( ) ( )( )

1 1 1

1 2

1, 1, 1,,
i i ii j i j i jW W   and ( ) ( )( )

2 2 2

1 2

2, 2, 2,,
i i ii j i j i jW W  . Then, the performance rate of 

the MSS s in this combination can be expressed as: ( ) ( )( )1 2

, , ,,
s s ss j s j s jW W  , where

( )
1 2, 1, 2,ser ,

s i is j i j i j =   . The function ( )ser   is used to obtain the intersection of 

the 
11, ii j and 

22, ii j . Assuming that 
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( ) ( )( )  ( ) ( )( ) 1 2

1 2 1 2

1, 1 1 1 2, 2 2 2, 0 ; , 0
i ii j i i i i j i i iW W W W =   = f f , , ss j can be expressed 

as: ( ) ( ) ( )( ) ( ) ( )( ) 1 2

1 2 1 2

, 1, 2, 1 , , 2 , ,ser , , 0 , 0
s i i s s s ss j i j i j i s j s j i s j s jW W W W =   =  f f; . 

Example 5 There is a CHP-based energy production system, which consists of 

a CHP unit and an energy delivery unit in series. The topology of the system is 

given in Fig. 5.5. It is assumed that the TIP-UGF of the CHP unit is expressed 

as：   

 C,1 0

C C Cu A z U z


=  +    (5.20) 

There are four states of the energy delivery unit: state 3, both electric power 

and heat power can be delivered; state 2, only electric power can be delivered; 

state 1, only heat power can be delivered; state 0, none of the electric power or 

heat power can be delivered. Hence, the TIP-UGF of the transmission network is 

shown as: 

 
T,3 T,2 T,1

T ET HT ET HT ET HT

0

ET HT

u A A z A U z U A z

U U z

  
=  +  + 

+ 
  (5.21) 

where ETA and ETU are the availability and unavailability of the electricity trans-

mission, respectively; HTA and 
HTU are the availability and unavailability of the 

heat transmission, respectively.  

 
Fig. 5.5 Topology of the CHP-based energy system 

 

Moreover, the nominal capacities of heat delivery and electricity delivery are 

50MW and 40MW, respectively. Therefore, 
T,3  can be expressed as: 

 ( ) ( ) 1 2

T,3 T,3 T,350; 40W W =     (5.22) 

The TIP-UFG representation of the whole energy system can be expressed as: 

 

( ) ( ) ( )

( ) ( )
( ) ( )

( )

C,1 T,3

C,1 T,3 C,1 T,1

s,3 s,1

C TC,T
ser

0 0

C C ET HT ET HT
ser

C ET HT C ET HT

0

C ET HT C ET HT C ET HT

C ET HT C ET HT

C ET HT C ET HT C ET

ser , ser ,

1

1

S
u u z u z

A z U z A A z U U z

A A A z A U A z

A A A A A U A U A z

AA A A z A U A z

A A A A A U A U

= 

 
=  +    + + 

   
= + +  +

+ − − − 

 
= + +  +

+ − − −

L

L L

L L

( ) 0

HTA z

   (5.23) 



98  

 

 

where
s,3 denotes the performance rate of the energy system when both the CHP 

unit and the energy delivery unit are at their best state, and so on.  

s,3 can be expressed as: 

 ( )

( )

( ) ( )

( ) ( )

1

,3

1 2

s,3 C,1 T,3 ,3 ,3

1 2

,3 ,3

0 50

ser , 6.25 262.5

50; 40

s

s s

s s

W

W W

W W

  
  

 =   = +  = 
 

   

   (5.24) 

The relationship between 
s,3¡ and C¡ is shown in Fig. 5.6.  

 

 
Fig. 5.6. Illustration of combining two components in series 

5.4 Risk Evaluation of the TIP-MSS through the TIP-UGF technique 

5.4.1. Availability criterion based on the TIP-UGF representation 

Once the TIP-UGF of the TIP-MSS is obtained, the system risk for any given 

demand vector ( )1 2,k k k=  can be evaluated by：  

( ) ( )( ) ( )( )1 2,

, , ,

0 0

, , , ,
X X

s x

s A A s x s x s x

x x

R k U z k p z k p k k
= =

 
= =  =   

 
     

 (5.25) 

The binary value ( )( )1 2

, , ,s x k k  in (5.25) takes a value of ‘1’ if there is a per-

formance variable vector ( ) ( )( )1 2

, , ,,s x s x s xW W  , satisfying the condition:

( )( ) ( )( )1 21 2

, ,& &s x s xW k W k  . As shown in (5.25), the risk is defined as the proba-
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bility that the MSS s will be in the states with performance trade-off curves be-

yond the demand point.  

For a TIP-MSS with weighted-sum conversion, the risk can be evaluated as: 

 

( ) ( )( )

( )

1 1 2 2,

s ,

0

1 1 2 2

, ,

0

, ,

,

X
s x

A A s x

x

X

s x s x

x

R k U z k p z c k c k

p c k c k

=

=

 
= =   + 

 

=    +





 



 (5.26) 

where ( )1 1 2 2

, ,s x c k c k  + in (5.26) takes a value of ‘1’ if there is a performance 

variable vector ( ) ( )( )1 2

, , ,,s x s x s xW W  , satisfying the condition:

1 1 2 2 1 1 2 2

, ,s x s xc w c w c k c k +    + .  

 

5.4.2. Illustrative examples 

i1

i2

i3

T1

T2 Load 

requirements

 

Fig. 5.7  The illustrative test system 

 

Case 1. In this case, an illustrative TIP-MSS is developed as shown in Fig. 5.7. 

The system has two branches connected in parallel. Branch 1 involves a CHP unit 

i1 and an energy delivery unit T1 which are series-connected. In branch 2, CHP 

units i2 and i3 are connected in parallel, which are then series-connected to T2. 

CHP unit i1 has a maximum heat power of 50 MW and a maximum electric power 

of 42 MW in its best-performing state. Both i2 and i3 have a maximum capacity of 

20 MW heat power and 17 MW electric power. Moreover, every unit has three 

possible states: 0, 1, and 2 as discussed in Example 1. The nominal heat delivery 

capacity and electricity delivery capacity of T1 are 6MW and 50MW, respective-

ly. While the nominal capacities of T2 are 50MW and 40MW, respectively.  

In order to meet the consumers’ demands for heat power and electric power, a 

range of requirements should be met, such that ( )1 22,10k = for the low-level de-

mand and ( )2 50,20k = for high-level demand. 

The TIP-UGFs for the three CHP units are defined as:  
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( )

( )

( )

1,2 1,1

2,2 2,1

3,2 3,1

0

1 1,2 1,1 1,0

0

2 2,2 2,1 2,0

0

3 3,2 3,1 3,0

i i

i i

i i

i i i i

i i i i

i i i i

u z p z p z p z

u z p z p z p z

u z p z p z p z

 
=  +  + 

 
=  +  + 

 
=  +  + 

  (5.27) 

Moreover, it is assumed that , , ,

.  

There are both four states of the energy delivery units T1 and T2. The TIP-

UGFs for T1 and T2 are: 

 

T1,3 T1,2 T1,1

T2,3 T2,2 T2,1

T1 ET1 HT1 ET1 HT1 ET1 HT1

0

ET1 HT1

T2 ET2 HT2 ET2 HT2 ET2 HT2

0

ET2 HT2

u A A z A U z U A z

U U z

u A A z A U z U A z

U U z

  
=  +  + 

+ 

  
=  +  + 

+ 

 (5.28) 

where ET1 HT1 ET2 HT2= =0.9; = =0.9A A A A
 

The two branches can be regarded as two subsystems s1 and s2 connected in 

parallel. The state distributions of the two subsystems can be determined based on 

the TIP-UGF of their components.  

First, the CHP units i2 and i3 in subsystem s2 are combined as pseudo unit i4 

based on the TIP-UGF equivalent. The TIP-UGF of i4 is evaluated as: 

( ) ( ) ( )
( )

( )
( )

( ) ( )

2,2 3,2 2,2 3,1

4 2 3 2,2 3,2 2,2 3,1 2,1 3,2
par

2,2 2,1

2,2 3,0 2,0 3,2 2,1 3,1 2,1 3,0 2,0 3,1 2,0 3,0

4,4 4,3

4,4 4,3

par , par ,
=

0+ +

= +

i i i i

i i i i i i i i i

i i

i i i i i i i i i i i i

i i

i i

u z u z u z p p z p p p p z

p p p p p p z p p p p z p p z

p z p z

   
=    +  +  

 
+  +  +    +    

 
  4,2 4,1

4,2 4,1 4 0

0+ + +i i

i i ip z p z p z
 

  ，

(5.29) 

Then, the state distributions of the two subsystems can be obtained based on 

the series combination operation.  

Finally, the TIP-UGF for the system can be obtained through the parallel com-

bination operator. Subsystems s1 and s2 have 7 states and 13 states, respectively. 

Hence, there should be 91 states for the system.  

 

( ) ( ) ( )

( )

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

,90 ,40

1 2
ser

1, 2,

1, 2,
ser

0 0

1, 2,

1, 2,

0 0

0

,90 ,40 ,0

ser ,

s s

s s

s s

s s

s s

s s

s s

s s

s s

s s s

M M
s j s j
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  (5.30) 

Once known the state distribution of the system, the risk can be evaluated 

based on the criterion (5.25). For example, the trade-off curve of the system state 

1,2 0.8ip = 1,1 1,0 0.1i ip p= = 2,2 3,2 0.9i ip p= =

2,1 2,0 3,1 3,0 0.05i i i ip p p p= = = =
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90 in which all the components are perfectly functional is shown in Fig. 5.8. The 

system is available for the high-level demand in this state since a performance 

vector can be found within the performance trade-off curve satisfying the condi-

tion: ( )( ) ( )( )1 2
50 & & 20s sW W  .  

 
Fig. 5.8  Illustration of the performance trade-off curve

,90s in case 1 

 

When all the CHP units degrade from state 2 to state 1, the system is degraded 

to state 76. The performance trade-off curve of this state, denoted by
,76s , is 

shown in Fig. 5.9.  

 
Fig. 5.9 Illustration of the performance trade-off curve

,76s in case 1 

 

From Fig. 5.9, we can see that the state 76 is unavailable for the high-level de-

mand since we cannot find a performance vector within the trade-off curve satisfy-

ing the availability criterion. The other observation is that the system in this state 

is still available for the low-level demand.  
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In similar ways, the availability in different system states can be obtained. 

Then, the probability of the system attaining the high-level requirement can be 

evaluated as: 

 

( ) ( )( )
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  (5.31) 

The probability of the system attaining the low-level requirement is: 
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  (5.32) 

Case 2 We consider the same TIP-MSS as in Case 1. The difference is that the 

conversion between the two performances is considered here. Hence, the illustra-

tive system is modeled as a TIP-MSS with the weighted-sum conversion in this 

case. Moreover, the weighting multipliers of the two performances are set as c(1)=1 

and c(2)=0.8, respectively. In other words, 0.8MW of heat power is equivalent to 

1MW of electric power in terms of meeting the consumers’ demand. Based on the 

weighting multipliers, the low-level and high-level demand requirements are con-

verted to 1 29.6k =  and 2 66k = , respectively.  

The performance trade-off curves of the TIP-MSS in different states also can 

be found in (5.30). Based on the criterion (5.26), the availability of TIP-MSS in 

different states can be evaluated.  

In this case, the system performance trade-off curve in state 76 is illustrated in 

Fig. 5.10.  

 
Fig. 5.10 Illustration of performance trade-off curve 

,76s in case 2 
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As shown in Fig. 5.10, performance vectors ( ) ( )( )1 2

,76,s s sW W  can be found 

satisfying the condition ( ) ( )1 2
0.8 66s sW W+   . Hence, the system is still available 

for high-level demand. It leads to the conclusion that the conversion between the 

different performances increases the risk of the system. 

In similar ways, system availability in different states can be obtained. Then, 

the probability of the system attaining the high-level requirement can be evaluated 

as: 
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  (5.33) 

The probability of the system attaining the low-level requirement is: 
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  (5.34) 

5.5 Conclusions 

This study extends the MSS model to the case where the engineering systems 

require two interdependent performance variables to measure the risk. The con-

cepts and definitions of the TIP-MSS are introduced in this chapter. The TIP-UGF 

based risk evaluation technique and the availability criterion are also proposed. 

Therefore, the risk of the engineering systems, such as CHP based district energy 

systems, can be evaluated with the consideration of the dependence between dif-

ferent performance variables. The proposed TIP-MSS model also applies to the 

power generation system when both active power and reactive power are consid-

ered. The simulation studies have shown that enabling the conversion between dif-

ferent performance variables is an effective method for improving the risk of the 

TIP-MSSs.  

 There are two directions for future work on this research. One is to expand the 

proposed risk model to MSS which requires more than two dependent perfor-

mance variables. The other direction is to generalize the proposed risk model to 

capture the epistemic uncertainties. 
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6 Operational Risk Assessment of Integrated 
Electricity and Heating Systems with CHP units 

6.1 Introduction 

As illustrated in the previous chapters, the large-scale deployment of energy-

efficient combined heat and power (CHP) has been witnessed in the last few dec-

ades. Nowadays, CHP accounts for a significant share of the total electricity gen-

eration in countries around the world. For example, CHP accounts for 50%–70% 

of the generation capacity in the Northern and Northeastern provinces of China 

[1]. The utilization of CHP has intensified the integration and interdependence be-

tween electrical and heating systems. As a consequence, the concept of integrated 

electricity and heating systems (IEHS) has been proposed [2]. In recent years, 

IEHS stands as one of the most discussed topics among industry, government, and 

academic sectors. Many previous studies on IEHS can be found in the literature, 

where most of them focus on operational flexibility improvement and operation 

optimization [3-9].   

Besides operation optimization issues, the operational risk assessment of the 

IEHS is also worth investigating. The heating power and electric power of a CHP 

unit are interdependent, which are constrained by its heat-electricity feasible oper-

ation region [10]. Therefore, the risk of the heating system is intertwined with the 

risk of the electric power system in the IEHS. Considering that, the heating system 

and electric power system in the IEHS should be viewed as an integrated whole 

when it comes to the risk assessment.  

Recently, many studies were conducted on the risk analysis of the integrated 

energy system (IES) where different energy vectors are interconnected and inte-

grated. Usually, four steps are involved in the integrated energy system risk evalu-

ation, including 1) building the risk models of the components, 2) selecting the 

component states and combining them to generate the system state, 3) analyzing 

the system state based on the optimal energy flow (OEF, the extension of the op-

timal power flow technique), and 4) calculate the risk indices. Generally speaking, 

most of the previous studies focus on the state analysis procedure. Previous stud-

ies have proposed multiple OEF models for the state analysis, with the considera-

tion of the complementary action of the multiple energy carriers, the dynamic 

characteristics of the gas and heating power distribution networks, the dynamic 

behaviors of heating loads, and so on [11]. For example, the authors in [12] ad-

dressed the dynamic behavior of loads in the risk evaluation of the IES. Reference 

[13] proposed a new risk evaluation method considering the impact of the load re-

bound characteristics on system risk. In [14], the authors proposed a risk evalua-

tion approach for IEHS with electric heat pump (HP) units based on the Monte 

Carlo simulation. In [15], the system state analysis along with autonomous system 

reconfiguration was conducted in the risk evaluation. In [16], a general risk as-

sessment method was proposed for energy hubs based on the simulation tech-
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nique. The results prove that the multi-energy coupling and coordinated operation 

can improve the risk of energy hubs. In [17], the optimal self-dispatching demand 

response model was established by considering multi-energy load reduction and 

conversion that significantly improve the risk of the IES. In [18], the risk of elec-

tricity-gas IES was evaluated considering different dynamic behaviors between 

power systems and natural gas systems and the cascading effects among them.  

In contrast, the risk modeling of the component has not been investigated com-

prehensively in previous studies. In previous studies, the coupling devices, along 

with the conventional electrical devices and other devices, are usually modeled as 

a binary state model or a multi-state model. Moreover, it is assumed that the prob-

ability and performance rate of the device over all states are predetermined. How-

ever, the aforementioned assumptions may bring errors to the operational risk 

evaluation of the IEHS. On one hand, each coupling device consists of several el-

ements. Hence, the state probability and performance rate of the coupling device 

should be obtained based on the analysis of the constitutive elements. On the other 

hand, different energy carriers are involved in the coupling device operation. Con-

sequently, the performance rates of the coupling devices could be more diverse 

and complicated to characterize. Considering that, detailed risk modeling of the 

coupling devices is necessary for the operational risk evaluation of the IEHS. Ref-

erence [19] proposed a CHP risk and availability model based on the multi-state 

system model. However, that study is focused on the CHP unit rather than the 

whole integrated energy system. As far as we know, no previous research has in-

vestigated the operational risk assessment of the IEHS considering both the de-

tailed risk models of the primary devices and operating constraints related to the 

devices and energy network.   

The research gap is filled in this chapter by proposing a framework for the op-

erational risk evaluation of the IEHS. First, the risk of the coupling devices, in-

cluding CHP units and HP units, is analyzed based on the state space and the Mar-

kov process method. It is noteworthy that coupling devices are strikingly different 

from the conventional generating units regarding risk analysis. Conventional gen-

erating units only require a single performance variable of electric power to meas-

ure their risk.  The coupling units, however, are designed to complete two tasks 

simultaneously and therefore require two interdependent performance variables of 

heating power and electric power to measure their risk. Considering that, the per-

formance level of the coupling devices in each state is represented by a perfor-

mance vector consisting of two interrelated elements.  

The operational risk of the IEHS should be measured by the risk indices. The 

loss of load probability (LOLP) and expected energy not supplied (EENS) are 

widely used in the risk of the electric power systems [15]. A set of nodal risk indi-

ces are defined to measure the LOLP and EENS both in terms of heating power 

and electric power. The risk indices are calculated through the scenario-based 

combined heat and power dispatch (CHPD) model in which multiple scenarios are 

modeled to consider the possible forced outages of the conventional generating 

units, coupling devices, and energy network devices.  
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Besides the states of the devices, the other factors that come into play in deter-

mining risk indices are the energy loads. Traditionally, the energy load uncertain-

ties are approximated by a multi-state model. However, the number of load states 

must be large enough to realize an accurate representation of the energy loads. To 

overcome this problem, the fuzzy multi-state model is developed to characterize 

the energy load uncertainties. In each load state, the load level is represented by a 

fuzzy number, which is a connected set of possible values and each possible value 

has its weight (membership) between 0 and 1. The load states are limited to avoid 

high computational complexity. Meanwhile, representing load levels by fuzzy 

numbers enables all possible realizations to be considered. 

While calculating the operational risk, it is significant to reduce the scale of the 

problem and improve the computation efficiency. On one hand, the traditional 

universal generating function (UGF) that is widely used in single-performance en-

gineering systems, such as power systems [20], is extended to the IEHS context to 

combine the states of coupling units to reduce the scenarios that need to be con-

sidered. On the other hand, the CHPD model is decomposed and linearized to en-

able it to be solved efficiently. 

In the context of the previous research, the innovative contributions of the study 

can be summarized as: 

1. The operational risk of the IEHS is assessed considering the detailed risk 

models of the coupling devices and the energy network.  

2. The performance vectors consisting of two interrelated elements are defined 

to measure the performance levels of the coupling devices.  

3. The fuzzy multi-state system models are proposed to characterize uncertain-

ties related to the energy loads.  

4. UGF and decomposition techniques are used to improve the computation ef-

ficiency of the risk assessment problem. 

This chapter includes research related to the operational risk assessment of 

IEHSs with CHP units by [21]. 

6.2 Risk Modeling of the Coupling Devices 

6.2.1 Risk model for the HP units 

In risk modeling of the HP units, outdoor coil, compressor, expansion device, 

and indoor coil are the series-connected components that need to be considered 

[22]. A simple model of the HP unit starting with the outdoor coil and ending with 

the indoor coil is shown in Fig. 6.1.  

 

Fig. 6.1 A simple model of the HP unit [22] 
 

Here, we consider the risk of the HP unit as a binary state model. In other words, 

the HP unit is either in the working state or failure state. Given the failure rate and 
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repair rate of the components, the equivalent risk indices of the HP unit can be 

calculated. The state probabilities associated with the HP unit working and failure 

states are respectively expressed in (6.1) and (6.2). The HP unit equivalent failure 

rate can be calculated via (6.3) while the equivalent repair rate would be 

accordingly found using (6.4) [23].  

   (6.1) 

   (6.2) 

   (6.3) 

 

  (6.4) 

In the above equations,  is the index of the constituent components of the HP 

unit.  

Unlike the traditional power system component that only needs a performance 

variable of electric power, the HP unit needs two performance variables to meas-

ure its performance rates. The performance rates of the HP unit in working state 

(state 1) and failure state (state 0) are expressed as: 

   (6.5) 

  In (6.5), is the rated heating power of the HP unit, and is equal to  

where is the efficiency of the HP unit. Notably, the HP unit con-

sumes electricity and therefore is considered a negative electricity generation. 

6.2.2 Risk model for the CHP units  

Based on the analysis of the component functions, a CHP unit is decomposed 

into three subsystems each of which consists of several components connected in 

series arrangements [19]. The connection of the three subsystems is shown in Fig. 

6.2. Subsystem 1 converts the fuel into thermal energy through the engine or tur-

bine. Hence, the CHP unit is totally out of work if subsystem 1 fails. Subsystem 2 

uses hot exhaust gases to produce useful heat energy. Hence, the CHP unit cannot 

produce heat energy if subsystem 2 fails but still can produce electrical energy if 

subsystem 1 works. On the contrary, the CHP unit can only produce heat energy if 

subsystem 3 fails.  
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Fig. 6.2 Subsystems in a CHP unit [19] 
 

Hence, a CHP unit has four possible states. State 3 is the perfect working state 

in which state both heat energy and electric energy can be produced. State 2 de-

notes the situation in that only heat energy can be produced and state 1 denotes the 

situation where only electric energy can be produced. State 0 is the total failure 

state.  

Then, the Markov process model is used to predict the probabilities of future 

CHP unit states. The four-state Markov model of the CHP unit is shown in Fig. 

6.3. The probabilities of future states are strongly dependent on transition rates be-

tween the current state and possible future states [24]. The transition rates can be 

determined by the risk indices of the subsystems. For example, and are 

respectively the failure rate and repair rate of subsystem 3, and are re-

spectively the failure rate and repair rate of subsystem 2, and are respec-

tively the failure rate and repair rate of subsystem 1. Notably, the failure rates and 

repair rates of the subsystems can be calculated in a similar way as (6.3) and (6.4).   

 
Fig. 6.3 State-space diagram of a CHP unit. “W” and “F” in the ellipse respective-

ly denote the working state and failure state of the subsystems 

 

The transitions among the possible states are expressed as the following differ-

ential equations.   
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 (6.6) 

where and are respectively the failure rate and repair rate of subsystem 

s3 at time t, and so on.  

As we can see from (6), state probabilities are influenced by the transitions 

among the states. By solving the differential equations (6) under the initial condi-

tions, e.g. , the state probabilities of the CHP unit 

i over the whole period can be obtained. 

In state 1, the performance rate can be represented by where 

denotes the maximum electric power when the CHP unit. Similarly, the 

performance rate in state 2 can be represented by where de-

notes the maximum heating power of the CHP unit. Both the heating power and 

electric power can be adjusted when the CHP unit is in state 3. Moreover, there is 

usually a trade-off between heating power and electric power. Hence, the perfor-

mance rate of the CHP unit in state 3 should be represented by a performance vec-

tor of two interrelated variables, i.e. . The ranges of and 

are expressed as:  

 
 (6.7) 

where and are the bound functions derived from the 

CHP unit heat-electricity feasible operating region.  

Based on the above discussion, the performance rates of the four states are ex-

pressed as: 

   (6.8) 

Note that the time-dependent state probabilities are calculated based on (6).  
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6.2.4 State combination based on the UGF technique 

There could be many CHP units or HP units connected to the same node. The 

CHP units or HP units on the same node can be aggregated as a typical multi-state 

CHP group or HP group through the UGF technique. Moreover, the states of the 

CHP group or HP group with identical performance rates can be emerged to re-

duce the number of system states.  

UGF is a representation of the random variable utilizing moment generating 

functions and z-transformation for analyzing the risk of the multi-state system 

(MSS) [25]. The UGF representation as a polynomial gives the probability and 

performance rates of the component/system over all possible states. Moreover, the 

UGF technique can find the entire performance distribution of the MSS based on 

the performance distributions of its components.  

 Here, we consider three HP units (j1, j2, and j3) with the same nominal capaci-

ties. The UGFs of j1, j2, and j3 can be obtained based on their performance distri-

bution: 

  (6.9) 

where . 

Assuming the three HP units are connected in parallel, the equivalent UGF rep-

resentation of the HP group can be calculated based on the UGF parallel combina-

tion operator:  

 

 (6.10) 

As shown in (6.10), three HP units with each having two states are equivalent to 

an HP group with four states. In this way, the number of system scenarios that 

need to be considered is significantly reduced.  

Then, the series combination operator is introduced. Assume HP j1 and an en-

ergy delivery unit are connected in series. There are four states of the energy 

delivery unit: state 3, both heating power and electric power can be delivered; 

state 2, only heating power can be delivered; state 1, only electric power can be 

delivered; state 0, none of the electric power or heating power can be delivered. 

The UGF of the transmission network is shown as: 

 

 (6.11) 
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where , , and are the state probabilities of the energy delivery 

unit . and denote the nominal heating power capacity and electric 

power capacity of the energy delivery unit, respectively. 

Then, the equivalent UGF of the HP j1 and energy delivery unit can be ob-

tained by the series combination operator: 

 

 (6.12) 

Combining the parallel combination operator and series combination operator, a 

general combination operator can be defined to obtain the UGF of a system with a 

more complex structure.  

 

  (6.13) 

In (6.13), C denotes a combination of N components/systems indexed by 1,…, 

N. M1,…, and MN denote the number of possible states of components 1, …, N, 

respectively. is the probability of the component/system N in state sN, and 

denotes the performance rate in this state. sC is the index of the state of 

the system C and MC is the number of the total states of the combination C.  

represents the general combination operator, which includes the parallel combina-

tion operator and the series combination operator .  

The aforementioned combination operators can deal with the HP units or other 

units whose performance rates are characterized by a vector of two fixed elements. 

Under such circumstances, the parallel combination operator sums up the perfor-

mance rate values of the components while the series combination operator calcu-

lates the minimum among the performance rate values of the components. How-

ever, as we can see from (6.8), the performance rate of a CHP unit at the perfect 

working state should be represented by a vector of two variables that satisfy a set 

of constraints. Hence, the parallel combination operator and series combination 

operator for dealing with the CHP units are different from the aforementioned op-

erators. The details concerning the combination operators for analyzing the states 

of CHP units can be found in our previous study [26].  
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6.3 Risk Evaluation based on the CHPD Model  

6.3.1 Modeling of the uncertain energy loads  

Usually, it is assumed the heating load and electric load forecast errors are de-

scribed by Gaussian distributions with standard deviations of  and , re-

spectively. With the consideration of the forecast errors, the energy loads are ap-

proximated by seven-state models [27], as shown in (6.14).   

  (6.14) 

In this chapter, the load level in each state is represented by a fuzzy number to 

capture the errors due to the modeling inaccuracy (the errors induced by convert-

ing the Gaussian distributions to a multi-state model) and parameter uncertainty. 

The fuzzy load levels are expressed as:  

   (6.15) 

In (6.15),  and denote the average values of the forecasted heating 

load and electric load. and are the lower limit and upper limit of the 

heating load at state , respectively.  and  are the lower limit and 

upper limit of the electric load at state , respectively. All the parameters can be 

determined based on the energy forecasted load values ( , ) and fore-

cast errors. and  are equal to , 

 and , respectively.  and 

are equal to  ,  and 

, respectively.  

Moreover, the membership functions of the energy loads are non-increasing 

monotonic linear functions. Take the heating load as an example, the membership 

function is expressed as (6.16).   

 (6.16)  
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6.3.2 Formulation of the CHPD model  

A certain combination of the states of the devices and energy demands produces 

a corresponding scenario x. In each scenario, the risk indices can be calculated by 

the CHPD model. The objective of the CHPD model is to minimize the total sys-

tem load curtailment for specific scenario s: 

   (6.17) 

The model is subject to the following constraints: 

  The limits of the CPP units and wind power turbines are expressed as: 

   (6.18) 

   The heating power and electric power of the HP units and CHP units are con-

strained by (6.5) and (6.8), respectively.   

For the sake of simplicity, the superscript s is omitted in the following formula-

tions.  

The electric power balance constraints are expressed as:  

 

  (6.19) 

The operational constraints related to the DHN which consists of symmetric 

supply and return pipelines are also considered. The DHN model is subject to hy-

draulic and thermal conditions [28], which are expressed as: 
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  (6.26) 

  (6.27) 

  (6.28) 

  (6.29) 

  (6.30) 

Equation (6.20) denotes the continuity of mass flow constraint which guaran-

tees that mass flows entering a node are the same as those leaving the node. Equa-

tions (6.21) and (6.22)make sure the fluid pressure drop due to the pipe friction in 

a closed loop is equal to zero, where Kq =1 indicates that the mass flow direction 

in pipeline q is consistent with that of loop direction; Kq = −1 indicates that the 

mass flow direction in pipeline q is opposite to that of the loop. Equation (6.23) 

formulated the relationship between the heat energy provided by heat sources and 

the mass flow from them. The connection between the heating loads and the mass 

flow to them is expressed in (6.24). The relation between inlet and outlet pipeline 

temperatures is established in (6.25). Equation (6.26) calculates the temperature at 

confluence nodes at which fluids with different temperatures come across. Con-

straints (6.27)-(6.30) denote the mathematical model of the heat storage device. 

Equation (6.27) denotes the stored heat energy level of the device. Notably, a 

small part of the heat would be lost due to energy exchange with the external envi-

ronment. Thus, this kind of loss should be taken into consideration and is assumed 

to be proportional to the previously stored heat [29].  

Additionally, the heat charging and discharging efficiency are also taken into 

consideration. Hence, the stored heat energy level at time step t can be expressed 

as(6.27), where  and are the stored heat level of the accumulator at 

time step t and t-1, respectively, and , and  are the storage efficiency, 

heat charging, and discharging efficiency of the thermal storage, respectively. 

Equation (6.28) restricts the sored heat level of the heat storage device, where  

and are the heat charging and discharging rate of heat accumulator at time 

step t, respectively. Constraints (6.29)-(6.30) represent the maximum charging and 

discharging power of the storage device.  

The heating load is quite different from the electric load. The thermal inertia of 

buildings allows a brief period of thermal energy supply interruption or reduction 

without decreasing the consumers’ satisfaction [30]. Considering that, we intro-

duce a slack variable to denote the flexibility of the heating load. 
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range. The building temperature  is represented as a function of time, which is 

determined by injected heating power and heat losses [31]:  

   (6.31) 

Equation (6.31) can be discretized as:  

  (6.32) 

The threshold of the comfortable temperature is expressed as:  

  (6.33) 

6.3.3 Algorithm to solving the CHPD model  

With the consideration of the fuzzy-number energy loads, the CHPD model is 

formulated as an optimization problem with fuzzy parameters. Moreover, the 

CHPD model is linearized in this chapter. Hence, the CHPD model is formulated 

as (6.34). 

  (6.34) 

where is the index of variables and is the number of total variables, is the 

index of the constraints,  is the number of the total constraints. and are 

the coefficients of the constraints.  

Based on the approach proposed by Carlsson and Korhonen [32], the original 

problem (6.34) is equivalent to the following auxiliary problem: 

  (6.35) 

where is the inverse of the membership function of the energy loads.   

Here, is defined as the optimism parameter which is adjusted based on the 

system operator’s risk propensity. For each given , one can obtain the optimal 

solution to the problem (6.35)  , and then the results are presented to the system 

operator for further decision. A large can be chosen if the system operator is 

more optimistic.  

Specific to the energy load, the energy loads can be calculated as (6.36) and 

(6.37) once the is chosen.  
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   (6.36) 

   (6.37) 

In the CHPD model, the operating constraints (6.21), (6.23)-(6.26) are noncon-

vex and require more computation time and resources. Moreover, it is observed 

that the DHN operation problem renders the convex optimization problem by fix-

ing the mass flow variables [33]. Thus, a hydraulic-thermal decomposition tech-

nique is proposed to decompose the CHPD problem into two linear programming 

problems that can be solved iteratively. The basic idea of the decomposition tech-

nique can be expressed as: 1) calculating the mass flow rate variables 

 when the temperature variables 

are all set as the minimum values. 2) 

solve the CHPD by fixing and update the temperature variables. The two steps 

are repeated iteratively to obtain the optimal results of the DHN operation problem. 

The procedure of the hydraulic-thermal decomposition technique is listed as fol-

lows. 

Algorithm for solving the CHPD model  

Step 1. Set the iteration index I=1, and set all the temperatures of pipelines to 

the lower limits .   

Step 2. Calculate the heat losses during the pipeline. Optimize production plans 

of heat sources; the total output is equal to the summation of heating 

loads and pipeline losses. Calculate mass flow rates based on the (6.20)-

(6.24). 

Step 3 Solve the linearized DHN optimization model with fixed .  

Step 4. Calculate the temperatures of pipelines .  

Step 5. If or then go to Step 7; otherwise, go to 

Step 6.  

Step 6. Set I=I+1,  and go to Step 2.  

Step 7. End.  

 

It should be noted that step 5 checks the stopping criteria, where  represents 

the convergence threshold that is set as 10-3 in this chapter and represents the 

maximum iteration time that is set as 20 in this chapter. The maximum iteration 

time is a system-dependent parameter and should be determined based on the ex-

perimental results. For a larger-scale test system, the maximum iteration time 

needs to be increased correspondingly. 
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6.3.4 Risk indices calculation  

LOLP and EENS are widely used for risk evaluation in power systems [23]. In 

this chapter, the LOLP and EENS concepts are extended to evaluate the nodal risk 

of the IEHS. The calculation of the LOLP and EENS indices follows several steps.  

First, establish the system state set, with each system state s corresponding to a 

certain combination of the component state and load level. Then, calculate the 

risk-related indices of the IEHS for each system state s. At last, sum up the risk 

indices of all the possible system states.  

The loss of electric load probability , loss of heating load probability 

, 
and loss of energy load probability as in (6.41)-(6.43), re-

spectively. 

   (6.38) 

   (6.39) 

 

 (6.40) 

where and are the binary logic variables. When there 

is the electric load shedding,  equals 1. Similarly,  

equals 1 when there is heating load shedding.  

The expected electricity energy not supplied, expected heat energy not supplied, 

and expected energy not supplied are expressed as (6.41)-(6.43), respectively. 

   (6.41) 

   (6.42) 

   (6.43) 

6.4 Case Studies 

6.4.1 Test system and parameters 

A 24-node IEHS is developed to illustrate the risk evaluation technique pro-

posed in this chapter. The topology of the test system is shown in Fig. 6.4.  
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Fig. 6.4 Topology of the 24-node test system 

 

The electric power system is based on the IEEE-RTS system [34]. The district 

heating system is an extension of the system developed in [35]. There are 20 load-

carrying nodes where both heating power and electric power are demanded. 

Moreover, it is assumed that the heat demand is equal to the electric demand in 

each node. There are 32 generating units located at ten generating buses in the sys-

tem, and a part of them are modified to the CHP units. There are also four HP 

units equipped in the test system. 

The data on CHP units and HP units are summarized in Table 6.1.  

Table 6.1 Data on CHP and HP units (The unit of the capacity is MW) 

CHP units 

Node 
Heating 
capacity  

Electric 
capacity 

Node 
Heating 
capacity 

Electric 
capacity 

2 253 153 13 400 240 

2 253 153 21 500 300 

13 400 240 21 500 300 

13 500 300 21 500 300 

HP units 

Node 
Heating 

capacity 
Efficiency Node 

Heating 

capacity 
Efficiency 

6 50 0.8 15 80 0.85 

6 50 0.8 15 80 0.85 

 

The daily load profiles are shown in Fig. 6.5. The maximum electric demand 

and heat demand are set as 60% of the installed capacity of electricity generation 

and heat generation, respectively.  
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Fig. 6.5 Daily load profiles of the test system 

6.4.2 Risk analysis of the test system  

First, the risk indices of the test system are calculated based on the proposed 

risk evaluation technique. 

Table 6.2 Nodal LOLP of the test system 

Node LOLPA LOLPE LOLPH 

2 0.0051 0.0004 0.0051 

4 0.0055 0.0008 0.0048 

6 0.0051 0.0006 0.0051 

8 0.0051 0.0004 0.0051 

10 0.0055 0.0008 0.0051 

14 0.0040 0.0005 0.0035 

16 0.0028 0.0001 0.0028 

18 0.0032 0.0004 0.0031 

20 0.0012 0.0001 0.0012 

 

The nodal risk indices for part of the load-carrying nodes of the test system are 

shown in Table 6.2 and Table 6.3. One of the observations from Table 6.2 and Ta-

ble 6.3 is that the LOLP and EENS of the heating system are larger than those of 

the electric system. In conclusion, the risk level of the heating-system part is lower 

than the electric-system part. The main reason behind it is the radiated heat pipe-

line topology, which has a reduced chance to maintain the heating power supply 

after a heat pipeline failure. 

Table 6.3 Nodal EENS of the test system 

Node EENSA (MWh) EENSE (MWh) EENSH (MWh) 

2 443.06  77.56  365.50  

4 698.09  352.29  345.80  

5 364.14  0.00  364.14  

6 997.25  485.73  511.52  

8 1185.87  547.38  638.50  
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10 1936.81  1342.85  594.00  

14 820.32  319.16  501.16  

16 279.61  11.84  267.77  

18 11838.36  484.12  654.24  

20 276.83  70.86  205.97  

 

The nodal risk indices are evaluated in three cases to test the impact of the ca-

pacities of HP units on the risk indices. Case 1 is the basic case. In Case 2, the ca-

pacities of the HP units are increased by 50%. In Case 3, the capacities of the HP 

units are doubled compared with Case 1. The simulation is conducted for over 24 

hours. The comparisons between the LOLPA and EENSA in different cases are 

shown in Fig. 6.6 and Fig. 6.7, respectively.  

 
Fig. 6.6 LOLPA of the load-carrying nodes in the three cases 

 

 
Fig. 6.7 EENSA of the load-carrying nodes in the three cases 

 

Based on the simulation results, we can conclude that both LOLPA and EENSA 

can be significantly reduced with the increase in capacities of the HP units. Be-

cause HP units improve the operational flexibility of the IEHS by converting elec-

tric power to heating power and consequently avoid the load curtailment to a cer-
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tain extent. The HP units especially contribute to enhancing the risk of the heating 

power supply since HP units can be considered as heating power sources.  

Notably, improving operational risk is not the only value of HP units. HP units 

also contribute to energy efficiency improvement and wind power integration [36]. 

Hence, the full cost recovery of the HP units is guaranteed.  

6.4.3 Impacts of the optimism parameter on the results  

As discussed in Section 6.3, the optimism parameter is introduced to convert 

the original optimization problem into a deterministic optimization problem. Dif-

ferent optimism parameters would lead to different results for the optimization 

problem. Then, the results are presented to the system operator for further decision. 

The impacts of the optimism parameters  on the risk evaluation results are 

summarized in Fig. 6.8(a) and Fig. 6.8(b), respectively. In conclusion, improving 

the optimism parameter  leads to lower LOLPA and EENSA. In the risk-

neutrality scenario when is set as 0.5, the average values of LOLPA in three cas-

es are 0.00405,0.00341 and 0.00300, respectively; the average values of EENSA 

are 967.21MWh, 831.12MWh, and 621.25MWh, respectively. In the risk aversion 

scenario when is set as 0, the average LOLPA in three cases are 

0.00438,0.00372, and 0.00311, respectively; the average values of EENSA are 

1031.6MWh, 908.64MWh, and 750.12MWh, respectively. In the risk-seeking 

scenario when is set as 1, the average values of LOLPA in three cases are 

0.00362,0.00301 and 0.00262, respectively; the average values of EENSA are 

852.30MWh, 723.66MWh, and 600.12MWh, respectively. 

 
Fig. 6.8(a) Average LOLPA in three cases with different optimism parameters 
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Fig. 6.8(b) Average EENSA in three cases with different optimism parameters 

6.4.4 The computational efficiency of the proposed technique  

As far as we know, no previous research has investigated the operational risk of 

the IEHS considering both risk models of coupling devices and the energy net-

work model. Hence, the MCS method is used as the reference to illustrate the 

computational efficiency of the proposed risk assessment technique which utilizes 

the UGF technique. Moreover, the original CHPD model which is formulated as a 

nonlinear linear programming (NLP) is compared with the proposed LP-based 

CHPD model in terms of accuracy and computation time for a one-hour-period 

analysis. All the simulations are on a personal computer with Intel Core i7 2.6 

GHz CPU and 16 GB of RAM. Three techniques are compared, including the 

MCS-NLP technique, UGF-NLP technique, and UGF-LP technique. The compari-

sons are concluded in Table 6.4.  

As shown in Table 6.4, the results of risk indices in different scenarios are very 

close. The results of the risk indices obtained by MCS are slightly larger than 

those in the UGF-based methods. In terms of the risk assessment results, the other 

observation is that the proposed linearization method has a very litter bearing on 

the accuracy of risk assessment results. The relative error between the NLP CHPD 

model and the LP CHPD model is less than 0.15%.   

When it comes to computation time, the benefit of the proposed solution tech-

nique is very remarkable. Compared with MCS-NLP and UGF-NLP methods, the 

computation time of the proposed technique can be reduced by 98.8% and 92.2%, 

respectively. The high efficiency of the proposed method enables it to be used in 

the operational risk assessment of the IEHS. 

Table 6.4 Comparisons of different techniques 

Method Average LOLPA 
Average EENSA 

(MWh) 
CPU time (s) 

MCS-NLP 0.00452 1112.1 82364.58 

UGF-NLP 0.00438 1046.0 12763.47 

UGF-LP 

( proposed ) 
0.00432 1031.6 1001.21 
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6.5 Conclusions 

In this chapter, the risk models of the coupling devices in the IEHS are first de-

veloped. UGF method is used to combine the states of the devices and correspond-

ingly reduce the scenarios that need to be considered. In the risk assessment pro-

cess, energy loads are represented by fuzzy multi-state models to capture the 

uncertainties related to the forecast error, model error, and data error. The scenar-

io-based CHPD model is developed to calculate the risk indices. Moreover, the 

CHPD model is linearized to improve computation efficiency. It is evidenced that 

the proposed solution technique has distinct advantages over other techniques. 

Simulation results verify the effectiveness of HP units in increasing the risk of the 

IEHS.  

There are two directions for future studies. On one hand, the condition-

dependent failure rates of the devices can be considered to improve the accuracy 

of the risk analysis results. On the other hand, the risk indices more related to the 

real-time operation can be established.  
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7 Operational Risk of Multi-Energy Customers 
Considering Service-Based Self-Scheduling 

7.1 Introduction 

In the previous six chapters, the risk of integrated electricity and gas systems as 

well as integrated electricity and heating systems is analyzed. On the demand side 

of multi-energy systems, the interaction of different energies gives birth to the 

concept of multi-energy customers. With access to multiple energy supply infra-

structures, multi-energy customers are provided with flexible options for satisfy-

ing their energy-related service needs. For example, space heating may be provid-

ed through electrical air conditions or direct thermal power from district heating 

networks. The parts of services that can be scheduled by multi-energy customers 

are referred to as multi-energy flexible services (MEFSs) [1]. Apart from service 

curtailment and service shifting among different time periods, available options 

for customers include shifting the MEFSs from one energy type to another in 

terms of energy substitution. In this manner, customers can self-schedule their en-

ergy consumption behaviors to minimize operation costs [2].  

The self-scheduling of flexible loads in multi-energy systems has been dis-

cussed in previous chapters. In the study [3], a comprehensive model was pro-

posed for self-scheduling an energy hub to supply the cooling, heating, and elec-

trical demands of a building. Real-time demand response in a multi-energy 

distribution system with its potential and arbitrage was studied in [4]. Optimal 

day-ahead scheduling of the multi-energy demand in an integrated urban energy 

system was explored in [5], with specific consideration of using different energy 

supply and conversion devices to minimize the day-ahead operation cost. The 

scheduling and interaction between the electricity and heat demands in a smart 

building were outlined with incentive energy prices in [6]. Additional uncertain-

ties and risks from the renewable generations and the electricity and thermal load 

were incorporated in the stochastic scheduling framework in [7]. The interactive 

strategy among a cluster of multi-energy customers was modeled as an ordinal po-

tential game with a unique Nash equilibrium in [8]. 

On the other hand, the development of information and communication tech-

nology also laid the physical foundations to implement self-scheduling for multi-

energy customers. In study [9], the residential multi-energy customers were incor-

porated into automatic decision-making technologies, where the household de-

mand, i.e., water heater and stove, can be optimally controlled in the real-time 

frame. Similar research was also conducted for the industrial customers in Ontario 

Clean Water Agency water pumping facility [10]. Transactive energy modeling of 

a multi-energy demand response business case and its arbitrage opportunities in 

providing ancillary services were introduced in [11, 12]. Moreover, initiatives 

such as GridWise and IntelliGrid in the USA and SmartGrids in the EU, have 

demonstrated progress in providing customers with multiple energy choices to 

maximize operational efficiency [13]. It has been evidenced both theoretically and 
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practically that the self-scheduling of multi-energy customers’ MEFSs contributes 

to reducing the customers’ operational costs, as well as maintaining the balance 

between the system energy supply and demand.  

Undoubtedly, securing risk and minimizing service interruption are prerequi-

sites for customers to self-schedule their MEFSs appropriately. Hence, an effec-

tive tool is necessary for monitoring and enhancing the customer-side risk during 

the operational horizon. Extensive researches have addressed the risk of separated 

electricity [14], gas [15], and heat systems [16] in the past few decades, while re-

cently, the risk modeling of the multi-energy system (MES) begin to draw great 

attention. Study [17] laid the foundation for modeling the risk of MES based on 

the concept of Energy Hub. Study [18] furtherly described the risk of components 

in MES using a generalized multi-performance weighted multi-state k-out-of-n 

system. On the other hand, some researches evaluated the risk of MES considering 

the energy management among the integrated energy distribution networks. A 

smart agent communication based method was proposed in [19] to improve risk 

evaluation efficiency. A hierarchical decoupling optimization framework and im-

pact-increment based state enumeration method were put forward in [20] to tackle 

the non-converge and low-efficiency issues in MES optimal power flow and to 

enhance the risk efficiency, respectively. However, the behaviours in the custom-

er-side are usually omitted in these researches.  

There are a few studies partially addressing the risk issues on the customer 

side. The adequacy of multi-energy customers was evaluated in [21], and the dy-

namics of thermal loads were integrated into the operational risk evaluation of 

MES in [22] using Monte Carlo simulations. Despite that the self-scheduling of 

energy consumption behaviors and its influence on the risk of power systems have 

been well developed [23], there still lack studies on the risk of multi-energy cus-

tomers considering self-scheduling strategies, especially in terms of energy substi-

tution and its chronological characteristics during the operational horizon. It 

should be noted that the integration of different energy infrastructures will result 

in significant complexities in the risk evaluation of customers. Firstly, in the case 

of an energy interruption, customers can shift to another energy type to provide 

the same service. This indicates that a service interruption is not simply deter-

mined by a single energy supply, but associated with the redundancies of other al-

ternative energy supplies. Moreover, possible random failures during service shift-

ing and deployment, as well as the fluctuation in the energy supplies and demands, 

will have significant impacts on the operational risk of multi-energy customers 

[24]. Therefore, it is challenging to evaluate the operational risk while considering 

both the energy substitution and multiple uncertainties during the self-scheduling 

of MEFSs. Meanwhile, the interruption of service will bring associated economic 

loss, which needs to be quantitatively evaluated in the risk analysis. Such econom-

ic loss is usually characterized based on customer damage function (CDF) [25]. 

However, the traditional CDF is formulated with electricity shortages and utilized 

in power systems. Therefore, it needs to be expanded for measuring the economic 

loss associated with the interruption of multi-energy services. 
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In order to address the aforementioned research gaps, this chapter aims to eval-

uate the operational risk of multi-energy customers, during which the flexibilities 

and uncertainties brought by self-scheduling with multiple energies are explored. 

The original contributions of this chapter are illustrated as follows: 

(1) A service-based self-scheduling model for multi-energy customers is pro-

posed. 

Considering that the consumed energies eventually come down to the energy-

related services, the self-scheduling of multi-energy customers in this chapter is 

implemented from a novel perspective of specific services rather than energy car-

riers. The chronological characteristics of service curtailment and shifting are also 

integrated into the self-scheduling model. The service-based point of view is novel 

and practical in managing the customers’ energy consumption and calculating the 

interruption costs.  

(2) Multiple uncertainties, particularly the inherent uncertainties during the ser-

vice shifting are incorporated into the self-scheduling model.  

Both the possible random failures during the service shifting and deployment, 

and fluctuations in the energy supply and demand are incorporated into the self-

scheduling model. Particularly, this chapter is the first to consider the inherent un-

certainties during the service shifting among alternative energies, where the possi-

ble failure is modeled as an imperfect switching process. The time-sequential 

Monte Carlo simulation (TSMCS) approach embedded with a scenario reduction 

technique is developed to cope with the uncertainties [26]. Taking full account of 

the possible scenarios, the quantitative risk indices of the multi-energy customers 

can be obtained. 

(3) A generalized CDF model is developed for calculating the curtailment and 

shifting costs of multi-energy services. 

In each scenario generated by TSMCS, the optimal self-scheduling of MEFSs 

is formulated with the objective of minimizing interruption costs during the opera-

tional horizon. Considering the electricity can cover most of the services, the CDF 

of the electricity sector is decoupled into each service, and then used to reconstruct 

the interruption costs for other energies, and service curtailment and shifting costs.  

This chapter includes research related to the operational risk analysis of multi-

energy customers by[27].  

7.2 General description of multi-energy customers and energy-

related services 

7.2.1 Introduction to multi-energy customers and energy-related 

services 

Fig. 7.1 depicts the structure of a multi-energy customer and its energy-related 

services. The general structure involves three sections, namely the multi-energy 

supply, appliances, and services required by the customer. The multi-energy sup-

ply generally includes multiple types of energy input portals, such as those elec-

tricity, natural gas, and heat. The services are categorized according to the re-
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quirements of customers, including space heating, water heating, cooking, light-

ing, etc. The appliance section links the energy supplies and services, and each 

appliance consumes a certain type of energy to provide a specific service.  

 
Fig. 7.1. Overview of multi-energy customers and energy-related services 

 

Particularly in the service-based self-scheduling context, each service can be 

divided into three parts: curtailable service (CS), shiftable service (SS), and fixed 

service (FS). The CS is defined as the part of the service that is not crucial and can 

be curtailed by sacrificing the customer’s comfort. For example, the temperature 

setpoint of an air conditioner in the summer can be turned up several degrees in 

exchange for an electricity demand reduction. The FS is defined as the vital part of 

a service that cannot be curtailed, or the part of a service that cannot be controlled 

automatically, such as traditional lights without remote switches. In this chapter, 

the SS is defined as the part of the service that can be shifted among both time pe-

riods and energies. For example, certain cooking services originally depending on 

natural gas can be rescheduled to another time and satisfied by electromagnetic 

ovens. Both the CS and SS are defined as MEFSs. The mathematical description 

of multi-energy customers can be found in the Appendix. 

7.2.2 Chronological multi-state model for multi-energy supply and 

demand 

The service needs are difficult to predict precisely. Therefore, they are usually 

modeled as stochastic distributions [1]. From the perspective of time, the service 

needs appear to be sequentially connected in the historical load data [28]. In this 

chapter, the multi-state model is modified to represent both the uncertainties and 

chronological characteristics of service needs [28].  

The need for service m  is modeled as the sum of two parts, the basic service 

need 
0,mg  and fluctuating part of service need 

mdg . The basic service need is 

provided as a certain value at a time point. The fluctuating part of service need can 

be clustered into NH  levels according to the historical data. The set of all levels 
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is denoted by {1,..., ,... }H h NH= , and the set of the fluctuating part of the need for 

service m  at all levels is denoted by the vector 1{ ,..., ,..., }H h NH

m m m mdG dg dg dg= . In 

each time period k , the fluctuating part of the need for service  denoted by 

( )mdg k  will take a value from the set H

mdG . In this chapter, the chronological tran-

sitions between different levels can be modeled as a Markov process, which has 

been widely adopted to predict uncertain future states in the operational phase 

[29]. The duration of each time period 
kT  is a random value associated with the 

transition rates among different levels. The probability of 
kT t  can be described 

by a cumulative distribution function ( )kF t  following an exponential distribution 

[29]: 

 
,

,

1

( ) Pr( ) exp ( )
NH p h

k k h p

p

F t T t t


=

 
=  = − 

 
   (7.1) 

where h  denotes the level of the fluctuating part of the need for service m  in time 

period k , and the transition rate from level h  to level p  is denoted by 
,h p . 

The modeling of multi-energy supply is identical to the multi-energy demand, 

which can be divided into the basic part and the fluctuated part. The basic part is 

determined to follow the multi-energy demand in the normal condition. The fluc-

tuated part is regarded to originate from unpredictable distributed renewable ener-

gies, such as wind, and solar [24]. The fluctuation of the multi-energy supply can 

be predicted by the multi-energy customers in the day ahead based on the histori-

cal data [24]. On the other hand, the day ahead prediction of distributed renewable 

generations was regarded to be shared within the whole multi-energy communities 

in the previous studies, which means the availability of data is ensured for the 

multi-energy customers [30, 31]. 

7.3 Optimal self-scheduling of multi-energy flexible service 

Considering the volatilities of the energy supplies and the chronological char-

acteristics of multi-energy services as illustrated in Fig. 7.2, possible scenarios can 

be generated for the entire study period. In each scenario, the MEFSs of multi-

energy customers will be self-scheduled to minimise the total operational cost 

(TOC). The self-scheduling strategy involves service curtailment and service shift-

ing. In order to explore the impacts of these self-scheduling behaviors on the mul-

ti-energy customers’ risk, the chronological characteristics and uncertainties of the 

MEFSs during self-scheduling are modeled. Moreover, the costs during self-

scheduling of MEFS are reconstructed from electricity CDF, and the optimal self-

scheduling of MEFS is formulated accordingly.  

m
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Fig. 7.2. Self-scheduling of MEFSs for multi-energy customers 

7.3.1 Chronological characteristics of service curtailment and ser-

vice shifting 

The shifting path of MEFS can be divided into two dimensions, shifting among 

time periods and shifting among different energy types, as illustrated in Fig. 7.3. 

The service shifting among time periods is also referred to as energy substitution. 

In order to replace the same amount of shifted-out service m  provided by the 

original appliance ,APl m  for the time length kT , the new appliance 
',APl m

  should 

be in operation for time length 'kT  with a corresponding new efficiency. For ex-

ample, the efficiency of electric boilers for providing hot water is assumed as 0.5. 

Electric boilers should be operated at a rated power of 2 MW for 2 h to provide a 

certain amount of water heating service. If the same service is shifted to use gas 

boilers with an efficiency of 0.8 and a rated power of 2.5 MW, the deployed time 

is 1 h. The service shifting process discussed above can be formulated as follows:  

 ', ' , ', ' ', '( , ) ( , ) , ,out in

l l k k l m k l l k k l m kss m k T ss m k T m k − − − −=    (7.2) 
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where ', ' ( , )out

l l k kss m k− −  represents the shifted-out amount of the need for service 

m   using energy l  in time period k , which is intended to be shifted into time pe-

riod 'k  using energy 'l . It should be noted that the original energy consumed by 

service l  is given, while the energy shifted into 'l  is selected by multi-energy cus-

tomers. The amount of corresponding service deployment in time period 'k  of 

energy 'l  is denoted by ', ' ( , )in

l l k kss m k− − . 

 

Fig. 7.3. Chronological service curtailment and service shifting 

 

The capacities ( )mcs k  and ( )mss k  set the upper boundaries of the implemented 

CS and SS of service m  in time period k , namely ( )mcs k  and ', ' ( , )out

l l k kss m k− − , 

as in (7.3) and (7.4).  

 0 ( ) ( )m mcs k cs k    (7.3) 

 ', '0 ( , ) ( )out

l l k k mss m k ss k− −    (7.4) 

Following the self-scheduling process, the updated energy demand '( )ld k  is:  

 
'

', ' ' , '

1 1 ' 1 ' 1

'( ) ( ) ( ) ( , ) ( ', ')
l l lNM NM NM NK

out in

l l m l l k k l l k k

m m m k

d k d k cs k ss m k ss m k− − − −

= = = =

= − − +     (7.5) 

where 
lNM  is the number of services consuming energy l  and NK  is the number 

of time periods. 

7.3.2 Uncertainties of service deployment among alternative ener-

gies 

In the service shifting context, a service may be maintained using alternative 

energies, by switching to another corresponding appliance. This process is defined 

as service deployment. However, the switching process from one energy type to 

another is not completely reliable, which may have further significant impacts on 

the operational risk of multi-energy customers [17, 32]. 

The imperfect switching model has been widely applied to the risk evaluation 

of engineering back-up systems [33]. As illustrated in Fig. 7.4, a single switching 

process can be represented by a three-state model, consisting of the standby state 



137 

 

(state 1), in-service state (state 2), and failure state (state 3). The stochastic transi-

tion among different states is modeled as a Markov process, and the necessary cor-

responding information is presented in the space diagram in Fig. 7.4 [29].  

Once the simulation of the study period begins, the potential appliance to be 

substituted is in initial state 1. In the following, it is assumed that the supply inter-

ruption of energy l  occurs in time period k , and hence the appliance 
,APl m

  is 

forced to be out of service. To satisfy the same service m , the amount of service 

', ' ( , )out

l l k kss m k− −  is covered using the remaining capacity of appliance 
',APl m  , 

where energy 'l  is consumed to maintain service m . During the deployment of 

service m , 
',APl m

 may be turned on successfully into state 2, or may fail to be de-

ployed and transit into state 3, where the actual deployment of the shifted-out ser-

vice ', ' ( , ) 0in

l l k kss m k− − =  . When time period k  is over, the substitutional appli-

ance is assumed to be initialized rapidly and to recover to state 1.  

 

Fig. 7.4. State space diagram of service shifting from a single alternative energy to 

multiple alternative energies 

 

The transition rates among states are calculated using (7.6) and (7.7), where sp  

is the start-up failure probability, and sT  is the mean shut-down time. 

 1,2 (1 ) /s

s sp T = −   (7.6) 

 1,3 /s

s sp T =   (7.7) 

The risk representation for a single alternative energy has been given above. 

Under some circumstances, several alternative energies could be available to de-

ploy service  , where the number of alternative energies is 1mNL − . For exam-

ple, two energies are available to be deployed supposing 3mNL = . The state space 

m
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diagram presented in the right half of Fig. 7.4 considers a shift in the service from 

energy  
3l  to 

1l  or 
2l . 

After integrating random failures of service deployment into self-scheduling, 

(7.5) should be updated as follows: 

 

'

', ' , ' , '

1 1 ' 1 ' 1 1

'( ) ( ) ( ) ( , ) ( ) ( ', ')
l l lNM NM NMNL NK

out in

l l m l l k k l m l l k k

m m l k m

d k d k cs k ss m k X k ss m k− − − −

= = = = =

= − − +  

  (7.8) 

where
, ( )l mX k  represents the state of alternative appliance 

,APl m
: 

  
,

,

,

0,if  AP  is at state 1 or 3
( )

1,if AP   is at state 2

l m

l m

l m

X k


= 


  (7.9) 

7.3.3 Formulation of optimal self-scheduling of multi-energy flexi-

ble service 

The optimization objective for the self-scheduling of multi-energy customers is 

to provide the required services with a minimal TOC, which is related to the un-

expected interruption cost (UIC), service curtailment cost (SCC), and service 

shifting cost (SSC), as in (7.10). In the case when the multi-energy demand ex-

ceeds the supply, customers can shift or curtail a part of relatively unimportant 

services to minimize the unexpected interruption of the important services. It is 

reasonable since the costs related to the curtailment and shifting of the unim-

portant services are far below that due to the unexpected interruption of the im-

portant service. Besides the data on the supply side, the required data on the cus-

tomer side, such as the information on the appliance and services, can be easily 

accessed or analyzed from historical data.  

 ( ) ( )( )
', '

( ), ( , ), '( , ), '( , )

1

1

, ' , ', '

1 1

Minimise  

( ) '( ) ' ( ) sgn '( ) ' ( )

( ) ( ) ( ) ( , )

m
m ml l k km

cs k ss l k l m k k m k

NL

l k l l l lNK
l

NM NM
k out

m k m m m k m k l l k k

m m

TOC UIC SCC SSC

CDF T d k es k d k es k

CCF T cs k SCF t t ss m k

− −

=

=

− −

= =

= + +

 
 −  − 

 =
 
+ + − 
 




 

  (7.10) 

where
1, 0

( )
0, 0

x
sgn x

x


= 


. '( )les k  is set according to 

1

( ),  for , ( ) 0

' ( ) 1
( ),  for , ( ) 0

l l

NK
l

l

k

es k k es k

es k
es k k es k

NK =

  


= 
 =




 to avoid further demand spikes during 

the multi-energy supply interruption. The detailed explanations for other terms in 

(7.10) are as follows: 



139 

 

The customer damage function (CDF) of energy l  (
lCDF ) is used to quantify 

the UIC. When unexpected interruption of energy supplies occurs, the on-going 

services might be interrupted and consequently, the customers suffer economic 

losses. Therefore, it is essential to include this kind of loss in risk evaluation. The 

CDF for electricity in previous studies was associated with the type of the custom-

ers, duration of the interruption, and the quantity of the interrupted service. The 

customer types refer to the industry sector, commercial sector, residential sector, 

etc.[25]. However, there lacks CDF formulations for other energies, such as gas 

and heat. Moreover, with multiple energy supplies, the insufficiency of a single 

energy does not necessarily result in the interruption of services. Considering elec-

tricity generally covers all services, therefore it sets the baseline to decouple CDF 

into each type of service and reconstruct the CDF in terms of other energies.  

According to a survey conducted by the Institute for Research in Economics 

and Business Administration (SNF) and SINTEF Energy Research, the propor-

tions of consumption 1{ ,..., }NM  =  and interruption costs 

1{ ,..., }NM  =  of different end-use categories are presented in [34]. Suppos-

ing that 
1l  represents electricity, the CDFs for services can be reconstructed from:  

 
1

( ) ( ) /m m ml
CDF t CDF t  =   (7.11) 

where m  and m  should satisfy 
1 1

=1
NM NM

m m

m m

 
= =

=  .  

The CDFs for other energy 1( )l l l  are constructed as a weighted sum of 

CDFs for services that consume energy l : 

 , ,

1

( ) ( )
lNM

l m l m l m

m

CDF t CDF t c 
=

=   (7.12) 

Under the framework of self-scheduling in multi-energy customers, service 

curtailment and service shifting requests should be notified to customers in ad-

vance. The curtailment cost function mCCF  is modeled as m m mCCF CDF=  

where m  reflects the lower cost of the initiative service interruption. The shifting 

cost function mSCF  is calculated as:  

 
,( ) ( ) / 24m m k mSCF t t CCF t=    (7.13) 

where ,m kt  is the interval between the shifted-out time ,m kt  and deployed time 

, 'm kt  of the service, , , ' ,m k m k m kt t t = − . Normally, we assumed that the interval of 

service shifting is less than 24 h, namely 0 24mt   . 

The control variables of optimal self-scheduling of multi-energy customers in-

clude: 1) the amount of curtailment for service m  in time period k , ( )mcs k  ; 2) 

the amount of service shifted out from service m  in time period k  using energy 
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l , to energy 'l  and time period 'k , 
', ' ( , )out

l l k kss m k− −
; 3) the time period of service 

deployment, correlating to the original service m  and time period k , '( , )k m k ; 

4) the deployed energy for each shifted-out service, correlating to the original ser-

vice m  and period k , '( , )l m k .  Apart from the limitations for the amount of im-

plemented CSs and SSs as in (7.3) and (7.4), the deployed time periods and ener-

gies of service m  are limited by the number of time periods NK  and set of 

available energies for service m , 
mL , as indicated in (7.14) and (7.15).  

 '( , ) ml m k L   (7.14) 

 0 '( , ) , '( , )k m k NK k m k Z     (7.15) 

In summary, the formulation of optimal self-scheduling for multi-energy cus-

tomers is a mixed-integer non-linear programming (MINLP) problem. The chal-

lenges of solving this problem mainly lie in two aspects: 1) it contains both integer 

variables and nonlinear constraints. 2) there are enormous scenarios simulated by 

time-sequential Monte Carlo simulation (TSMCS), and each scenario involves an 

independent MINLP model. Therefore, an effective algorithm is urgently required 

to apply to the large-scale optimization problem. 

Genetic algorithm (GA) has proved its efficiency in extensive previous studies 

regarding the scheduling of the energy consumption of customers [23, 35]. It has a 

simple and understandable procedure, including 1) generating an initial popula-

tion; 2) evaluating the fitness function of each individual, namely, the scores; 3) 

selecting parents based on the scores and producing children by mutation and 

crossover. Pass down a certain proportion of elite individuals with high fitness 

values directly to the next generation; 4) replace the current population with chil-

dren; 5) continue from step 2) until the stopping criteria are met. Compared with 

analytical approaches such as branch and bound (BNB), GA is robust to the non-

linearities and non-convexities, and it can balance well between the computation 

time and the accuracy, which is suitable for simulating the self-scheduling of mul-

ti-energy customers practically [23]. Moreover, it can be easily accelerated using 

parallel computing techniques. Therefore, GA is adopted to solve the self-

scheduling problem proposed in this chapter.  

7.4 Operational risk evaluation procedures using time-sequential 

Monte Carlo simulation 

For evaluating the operational risk of the self-scheduling of multi-energy cus-

tomers, the TSMCS approach is used to sample the chronological levels of service 

needs, fluctuation in the multi-energy supply, and imperfect switching during ser-

vice deployment. Moreover, the loss of load probability (LOLP) and expected en-

ergy not supplied (EENS) used in the power system risk evaluation are expanded 

to apply to multiple energies [19, 26]. In this manner, we obtain 

1( ) { ( ),..., ( )}NLLOLP T LOLP T LOLP T=  and 

1( ) { ( ),..., ( )}NLEENS T EENS T EENS T=  for evaluating the time-varying reliabili-
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ties of all the energies. The l  elements of the vectors ( )LOLP T  and ( )EENS T  

are calculated as follows: 

 ( )
max ( )

1 1

( ) '( ) ' ( ) /
k T NS

l k l l

k is

LOLP T T sgn d k es k NS
= =

 
= − 

 
    (7.16) 

 ( ) ( )( )
max ( )

1 1

( ) '( ) ' ( ) '( ) ' ( ) /
k T NS

l k l l l l

k is

EENS T T d k es k sgn d k es k NS
= =

 
= − − 

 
    (7.17) 

where max ( )k T  is the maximal value of  k  that satisfies 
1kt T+  , and NS  repre-

sents the simulation times. It should be noted that the TSMCS could be a time-

consuming process, as the possible scenarios will grow exponentially with a linear 

increase in the components. Therefore, a scenario reduction technique is embed-

ded in the TSMCS procedures to reduce the number of scenarios and improve 

computational efficiency. The steps presented below are the TSMCS procedures 

for evaluating the operational risk of multi-energy customers considering the self-

scheduling of MEFS, and the corresponding flowchart is displayed in Fig. 7.5. 

 
Fig. 7.5. Operational risk evaluation procedure for multi-energy customers 

 

Step1: Calculate the steady probability of the fluctuating part of service need at 

level h , Prh  for each service m  [36]. Determine the initial level for each service 

m  using the TSMCS sampling technique [37].  
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Step 2: Determine the duration of the current level and level in the next state 

for each fluctuating part of need for service m . The duration of the current level 

h  is calculated based on the PDF described in (7.1). The duration is specified as 

,

,

1

ln /
NH p h

k h p

p

T U 


=

=  , where U  is a uniformly distributed random value over the 

interval (0,1)  [37]. The probability of state h  entering another state 'h  is 

, '

' , ' , '

1

Pr /
NH h h

h h h h h

h

 


=

=  . If 
' ' 1

' '

1 1

Pr Pr
h h

h h

h h

U
+

= =

   , the level will be 'h  in the next 

time period 'k . 

Step 3: Repeat step 2 until 
1

NK

k

k

T ST
=

 , where ST  is the entire study period.  

Step 4: Merge the sequence of the fluctuating part of the need for service m , 

( )mdg k  and basic need for service m , 0, ( )mg k  into a new sequence ( )mg k , and 

reduce the number of scenarios as follows. Suppose that the current time period 

for the basic need of service 
0,mg  is k . Determine the scenario indices of the fluc-

tuating part of the need for service m , 
sk  and 'sk  satisfying 

1s s
kk k

t t t
+

   and 

' 1 ' 1s sk k kt t t+ +  , respectively, where kt  denotes the beginning time point of period 

k . Compare sk  and 'sk . Note that 's sk k . If 's sk k= , the total need for ser-

vice m  can be calculated as 0, ,( ) ( ) ( )m m m k mg k g k T dg k= + . Otherwise, calculate 

the value as follows: 

 
1 11 '

( ) ( ) ( ) ( ) ( ') ( )( )
s s

s

k

m k m s k m s m ik ikk k
ik k

g k t t dg k t t dg k dg ik t t+ ++
=

= − + − + −  (7.18) 

Step 5: Determine the condition of the multi-energy supply based on the una-

vailability, similar to the process in step 1. In each scenario simulated by TSMCS, 

GA is applied to solve the optimal self-scheduling of MEFS formed by (7.3), (7.4), 

(7.10), (7.14), and (7.15) as follows. First, set the boundaries for control variables 

according to (7.3), (7.4), (7.14), and (7.15); second, calculate the CDF for each 

energy and service to form the objective function in (7.10). Third, solve the opti-

mal self-scheduling problem using GA [38]. Fourth, simulate the random failures 

during the service deployment according to (7.8).  

Step 6: Calculate the risk indices according to (7.16) and (7.17) based on the 

actual services that have been deployed. Return to Step 1 until the confidence in-
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tervals are satisfied. The stopping criterion provided for the TSMCS is the EENS 

coefficient of variance , which can be calculated as follows: 

 max( ( ( )) / ( ))EENS l lV EENS T EENS T =   (7.19) 

where ( ( ))lV EENS T  is the variance of ( )lEENS T . 

7.5 Case studies and discussions 

Case studies are conducted to demonstrate the proposed operational risk evalu-

ation technique. Two cases are presented in this section. Case 1 is organized to 

validate the effectiveness of the proposed service-based self-scheduling model. It 

compares the operational reliabilities and costs with those in the scenario without 

self-scheduling. It should be noted that the uncertainties are not included in Case 

1. Case 2 aims to quantitatively analyze the impacts of uncertainties on the opera-

tional risk of consumers, and the typical service losses due to random failures dur-

ing service deployments are considered. 

 
Fig. 7.6. Daily load profile of multi-energy services 

 
Table 7.1. Efficiencies of energies to provide services 

 
Water 

heating  

Space 

heating  
Cooking  Lighting  

Other elec-

tricity ser-

vice  

Gas 

service  

Heat 

service 

Electricity 0.5 0.1 0.2 1 1 0.5 0.5 

Gas 0.5 0.4 0.8 0 0 1 0.5 

Heat 0.5 0.5 0 0 0 0.5 1 

 

In this chapter, the energy supplies provided to multi-energy customers include 

electricity, gas, and heat, hence there is 3NL = . The basic needs for services are 

illustrated in Fig. 7.6 [21]. The entire study period is set to one day, with each in-

terval for the basic need of services equal to 1 h, hence 24NK = . Prior to self-

scheduling, the electricity demand is split into five services, and the efficiencies of 

the energies used to provide the services are listed in Table 7.1 [21]. An efficiency 

of zero means that the service cannot be provided with this type of energy. The 
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original gas and heat demand for customers is not split into detailed services. 

Thus, the number of services adds up to 7NM = . The proportions of CS and SS 

are set as 0.1 and 0.25, respectively. The levels of the fluctuating part of services 

and their transition rates are derived from a historical load profile during a sum-

mer week [39]. The start-up failure probability 
sp  and the mean shut-down time 

sT  are set according to [26]. The electricity CDF used in this chapter is presented 

in Table 7.2 [40]. The unavailability of each energy supply infrastructure is 0.02 

[32]. The convergence criterion 
set  is set to 0.05. The numerical simulations are 

performed on a Lenovo laptop with an Intel® Core™ i5-6200U 2.3 GHz and 8GB 

of memory. 

Table 7.2. Estimated average electric customer interruption costs with different 

durations 

Interruption cost 
Interruption duration 

Momentary 30 minutes 1 hour 4 hours 8 hours 

Cost per unserved kWh ($) 96.5 22.6 15.3 13.0 10.6 

7.5.1 Case 1: Chronological characteristics of multi-energy flexible 

services and the operational risk of multi-energy customers consid-

ering self-scheduling 

In this case, in order to demonstrate the chronological characteristics during 

self-scheduling, and compare the operational reliabilities and costs after self-

scheduling with their original values without self-scheduling, the failure rate dur-

ing service deployment is set to zero to exclude uncertainties. That is, the self-

scheduling of the MEFSs could be completed perfectly without unexpected fail-

ures. The scale of the optimization problem and the performance of GA is present-

ed in Table 7.3. It can be seen that the average computation time for one optimiza-

tion and the relative standard deviation of the objective function value are 

acceptable for the risk evaluation of multi-energy customers. 

Table 7.3. Scale of the optimization problem and the performance of GA 

Problem scale 

Number of time period NK 24 

Number of service NM 7 

Number of energy NL 3 

Number of continuous variables 336 

Number of integer variables 336 

Number of constraints 1344 

Performance 
Average computation time (s) 7.94 

Relative standard deviation of the objective function value 3.69% 

 

For the sake of clarity, the self-scheduling is divided and presented into two 

stages. The first stage includes service curtailment and service shifting out, as in-

dicated in Fig. 7.7. It can be observed that the self-scheduling of MEFSs reduces 
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the peak demands for electricity and heat effectively by 17.96% and 16.18%, re-

spectively. The services shifting out account for the 68.48% of decreasing in ener-

gy demand because of relatively lower costs. The service shifting and curtailment 

are usually implemented during the demand peaks, e.g., 7:00 – 12:00 and 17:00 – 

24:00 for the electricity demand. It should be noted that the gas demand continu-

ously maintains a high level from 0:00 to 12:00, and the proportion of the shifted-

out gas service is relatively small during that period.  

In order to clarify the behavior of specific services during the self-scheduling, 

Fig. 7.9 and Fig. 7.10 further split the curtailed and shifted-out energy demands 

into different services. Indicated jointly by the histogram in Fig. 7.9(a) and Fig. 

7.10(a) and Fig. 7.10(b) in the time domain, the space heating and water heating 

are most likely to be curtailed or shifted out, they take 28.42% and 40.05% of the 

total curtailed services, and 22.33% and 37.94% of the total shifted out services, 

respectively. Conclusions can be drawn from the first stage that the heating related 

services are most likely to be curtailed, shifted into another period, or substituted 

by another type of energy, not only owing to its relatively lower SCC and SSC, 

but also easy and efficient realization using other energies. 

 
Fig. 7.7. Service curtailment and service shifted out during self-scheduling 
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Fig. 7.8. Service deployment from each energy during self-scheduling 

 

  

 
Fig. 7.9. (a) Histogram of services to be curtailed or shifted out; (b) histogram of 

energies to be deployed; (c) histogram of periods for deployment 
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Fig. 7.10. (a) Electricity service curtailment during self-scheduling; (b) Electricity 

services shifted out during the self-scheduling; (c) Electricity services deployment 

during self-scheduling 

 

The deployment of shifted-out services for each energy at the second stage is il-

lustrated in Fig. 7.8. The electricity demand is in part substituted with the gas and 

heat demand, due to its wide utilization in providing services. The shifted-out ser-

vices are more likely to be deployed to the valley periods of electricity and heat 

rather than gas. This characteristic is also verified in the histogram in Fig. 7.9(b) 

and Fig. 7.9(c). Another worth noting point is, from the perspective of all energies, 

the total amount of service shifting in is less than that of service shifting out. For 

example, the amount of electricity service shifting out is 16.60 MW over the 

whole study period, while the amount of electricity demand, gas demand, and heat 

demand shifted from the electricity services are 3.58, 1.07, and 3.47 MW. This 

validates that the substitution among energies during self-scheduling can promote 

the overall efficiency of energy consumption.  

Similarly, the deployment of energy demands is further split into detailed ser-

vices in Fig. 7.10(c). Considering that the deployed electricity demand from heat-

ing service and the deployed heat demand from gas service cannot be furtherly 

split, and the deployed gas demand from electricity service is all cooking service, 

the deployment process of electricity and gas demand are not furtherly illustrated 

based on the specific service. However, the deployed heat demand from electricity 

service can be further split into the water heating and space heating, as presented 

in Fig. 7.10(c). Observed from Fig. 7.10(b) and Fig. 7.10(c), it is also validated 

that although the water heating and space heating shifted out are roughly the same, 
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the proportions of those deployed in the heat demand differ remarkably, owing to 

their different efficiencies provided by electricity. 

We can further compare the operational costs and reliabilities in Fig. 7.11 and 

Fig. 7.12 to analyze the benefits from self-scheduling. The self-scheduling of 

MEFS reduces the operational cost by 14.05%, as well as reduces the EENS of 

multi-energy customers significantly by 56.32%. In Fig. 7.11, the times of the 

three operational cost peaks are approximately 10:00, 15:00, and 20:00, which are 

consistent with the times for the electricity and heat demand peaks. During the 

first peak time at approximately 10:00, the operational cost is mainly composed of 

the SCC and SSC, because there is enough redundancy in the other energies or 

time periods for services to be deployed, and therefore unexpected service inter-

ruptions can be minimized. During the third peak at approximately 20:00, the UIC 

becomes enormous because the implemented CSs and SSs are limited by their 

maximum capacities. The operational risk indices following self-scheduling in 

Fig. 7.12 appear to exhibit a peak and valley pattern similar to that of the opera-

tional cost in Fig. 7.11. It can be concluded that the self-scheduling of MEFSs is 

effective in improving the operational risk of multi-energy customers, particularly 

during peak hours. 

  

Fig. 7.11. Economic benefits 

from self-scheduling. 

Fig. 7.12. Risk benefits from self-

scheduling. 
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C 0.0078 0.0054 0.0109 0.0204 0.0105 

D 0.0071 0.0049 0.0093 0.0136 0.0093 

 

In order to quantify the influence of the MEFS, four scenarios with different 

CS and SS proportions are studied, and the results are listed in Table 7.4. It can be 

observed that the EENSs and LOLPs for all energies without MEFSs in scenario 

A are larger than those in the other scenarios, where the self-scheduling of MEFS 

is taken into account. Moreover, by comparing the last three scenarios, we can 

conclude that with a greater proportion of MEFSs, although the EENSs and 

LOLPs are not monotonic for some energies, generally the EENS and LOLP for 

multi-energy customers will decrease. 

7.5.2 Case 2: Impacts of multiple uncertainties on the operational 

risk of multi-energy customers 

In this case, the uncertainties from random failures during service deployment 

are studied. The failure rate for service deployment is initialized to . Fig. 

7.13 and Fig. 7.14 demonstrate the impacts of the random failures on the opera-

tional risk of multi-energy customers. Fig. 7.13 presents a typical example of ser-

vice losses due to random failures during service deployments. The orange and 

purple areas indicate the differences between the scheduled demand and actual 

demand. It tends to occur at the times of the demand valleys, when service de-

ployments are most likely to take place. It can be observed from Fig. 7.14 that, 

when random failures during service deployment are considered, the operational 

risk of multi-energy customers will be slightly inferior. The EENSs for electricity, 

gas, and heat increase by 4.04%, 7.84%, and 2.16%, respectively. 

 

Fig. 7.13. Representative service losses due to random failures during service de-

ployments. 
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Table 7.5. Risk of multi-energy customers considering different failure rates 

Scenario 
Failure rate

 (/hour)  
Electricity 

EENS (MW) 

Gas EENS 

(MW) 
Heat EENS (MW) 

Electricity LOLP 

(/hour) 

A 0 0.0121 0.0006 0.0112 0.0083 

B 0.1 0.0128 0.0008 0.0119 0.0089 

C 0.3 0.0139 0.0007 0.0113 0.0083 

D 0.5 0.0154 0.0003 0.0117 0.0117 

Scenario 
Failure rate

 (/hour)  
Gas LOLP 

(/hour) 

Heat 

LOLP 

(/hour) 

EENS for multi-

energy customers 

(MW) 

LOLP for multi-

energy customers 

(/hour) 

A 0 0.0043 0.0107 0.0239 0.0107 

B 0.1 0.0054 0.0110 0.0255 0.0110 

C 0.3 0.0056 0.0116 0.0259 0.0116 

D 0.5 0.0056 0.0136 0.0274 0.0136 

 

  

 

Fig. 7.14. Impacts of random failures on the operational risk of multi-energy cus-

tomers. 
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Furthermore, in order to quantify the impacts of random failures during service 

deployments, four scenarios with different failure rates are considered. The risk 

indices are listed in Table 7.5. It can be observed that the failure rate of service 

deployment will significantly influence the risk of multi-energy customers. The 

operational risk to customers will be inferior when the failure rate increases. 

Summarised throughout the two case studies, we can find that even taking the 

negative impacts from random failures during the service deployment, the opera-

tional risk of multi-energy customers can still be improved by implementing self-

scheduling. 

7.5.3 Case 3: Validation of the proposed technique using a practi-

cal case 

In order to demonstrate and validate the proposed self-scheduling strategy and 

corresponding operational risk evaluation technique practically, a new urban dis-

trict in East China is utilized in this case. This district is involved in a demonstra-

tion project on the transformation towards a multi-energy smart district, and there-

fore its energy demand is metered and kept in the record in high resolution.  

Here we take a group of high-rise apartments located in the west of this district 

as a typical example of a residential multi-energy customer. It occupies a 1.70×105 

m2 land area and owns a 2.54×105 m2 construction area. The experiment is con-

ducted on a representative winter day, where the peak demands for electricity and 

heat are 4.74 and 1.89 MW. The massive electricity demand data are available on 

Electric Energy Data Acquire System of the State grid corporation of China, while 

the heat demand is derived from the metered mass flow rate and the temperature 

differential of the supply and return water in the pipelines [41]. The quantity of 

heating-related services, including water heating and space heating, in electricity 

demand, is derived by comparing the typical summer electricity demand and the 

non-seasonable electricity demand in spring or autumn.  

Its daily load profile is presented in Fig. 7.15. Only electricity and heat de-

mands are involved in this case, . Corresponding to that, compared with 

Case 1, the cooking and gas services are no longer available in the self-scheduling 

context, . Other parameters are set the same as in Case 1. 

 

Fig. 7.15. Daily load profile of multi-energy services in a practical case 
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The two-stage self-scheduling of the multi-energy customer is illustrated in Fig. 

7.16–18. It can be observed in Fig. 7.16 that by implementing self-scheduling, the 

multi-energy customer has reduced its electricity and heat peak demands by 

24.35% and 4.27%, respectively. The shifted out services account for 71.79% of 

the decrease in energy demands. Seen from the perspective of services in Fig. 

7.17, heating-related services, including water heating and space heating, are still 

the major MEFSs for self-scheduling, which takes 45.80% and 41.83% of the total 

curtailed services, and 42.32% and 54.23% of the shifted out services. It confirms 

the conclusion in Case 1 that the large proportion of heat-related services will be a 

prerequisite to promoting the effectiveness of self-scheduling. 

As demonstrated in Fig. 7.18, previously shifted out services tend to be de-

ployed at 23:00 – 8:00. From the perspective of all services, the total quantity of 

deployed services is 3.86 MW, presenting a remarkable reduction of 55.71% com-

pared with 9.13 MW shifted out services. This indicates that the self-scheduling is 

not only efficient in reallocating the services temporally to improve the operation-

al risk and operational cost, but also in promoting the overall efficiency of energy 

consumption. 

 
Fig. 7.16. Service curtailment and service shifted out during self-scheduling in the 

practical case. 

 

 
Fig. 7.17. Electricity service curtailment and shifted out during the self-scheduling 

in the practical case. 
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Fig. 7.18. Service deployment from each energy during self-scheduling in the 

practical case. 

 

Table 7.6. Impacts of self-scheduling and uncertainties on the risk of the multi-

energy customer in the practical case 

 Scenario A Scenario B Scenario C 

Electricity LOLP (/hour) 0.0092 0.0059 0.0073 

Heat LOLP (/hour) 0.0127 0.0111 0.0120 

LOLP for the multi-energy customer (/hour) 0.0136 0.0118 0.0130 

Electricity EENS (MW) 0.0074 0.0010 0.0014 

Heat EENS (MW) 0.0066 0.0038 0.0042 

EENS for the multi-energy customer (MW) 0.0140 0.0049 0.0056 

 

In order to validate the effectiveness of self-scheduling in the practical case, the 

risk indices of the multi-energy customer are obtained and compared in three sce-

narios, as presented in Table 7.6. The risk indices in Scenario A are calculated 

without implementing self-scheduling, and the risk indices in Scenario B are cal-

culated after self-scheduling, but the uncertainties are excluded. In Scenario C, the 

risk indices are calculated taking full consideration of uncertainties, and the failure 

rate for service deployment is set to . It can be observed that the reliabili-

ties in terms of all the energies benefit from self-scheduling. The LOLP and EENS 

of the multi-energy customer reduce by 13.24% and 65.00%, respectively. Moreo-

ver, it confirms that even considering the uncertainties such as a relatively high 

failure rate for service deployment, the risk can still be improved. In this case, the 

LOLP and EENS of the multi-energy customer are still reduced by 5.83% and 

60.00%, respectively. 

7.6 Conclusions 

This chapter proposes a service-based self-scheduling model for multi-energy 

customers, and evaluates the operational risk considering the multiple uncertain-

5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
le

ct
ri

ci
ty

 d
em

an
d

 (
M

W
)

Time (hour)

 Electricity demand before deployment

 Shift from electricity services

 Shift from heat service

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

H
ea

t 
d
em

an
d
 (

M
W

)

Time (hour)

 Heat demand before deployment

 Shift from electricity services

 Shift from heat service



154  

 

 

ties. Case studies demonstrate that the expected energy not supplied to the multi-

energy customer drops significantly by 56.32% with the self-scheduling strategy. 

Among various services, the heating related services are most likely to be cur-

tailed or shifted. The operational cost can also be reduced. By increasing the pro-

portion of multi-energy flexible services, the overall operational risk of multi-

energy customers can be furtherly improved. On the other hand, the self-

scheduling of multi-energy customers is associated with uncertainties. Random 

failures during the service deployment will have negative impacts on the opera-

tional reliabilities. However, even considering this point, the operational risk of 

multi-energy customers can still be improved by implementing self-scheduling.  

With the recent intensified interaction of multi-energy infrastructures, custom-

ers become possible and motivated to self-schedule their energy consumption be-

haviors to maintain more reliable services with lower costs. Therefore, the quanti-

tative operational risk evaluation technique and corresponding conclusions 

presented in this chapter could provide considerable practical information in the 

decision-making for customers’ energy management. 

Appendix: Mathematical descriptions of multi-energy customers 

The following definitions are provided for mathematically describing the rela-

tionships among the three sections. 

1) The multi-energy supply is represented by the vector

1{ ,..., ,..., }l NLES es es es= , where  denotes the amount of energy  delivered to 

the customer, and les  represents the number of energy types.  

2) The energy demands of a multi-energy customer are represented by the vec-

tor 1{ ,..., ,..., }l NLD d d d= , where ld  denotes the amount of energy l  required by 

the customer. 

3) The service needs are represented by the vector 1{ ,..., ,..., }m NMG g g g= , 

where mg  denotes the need for service m , and NM  denotes the number of ser-

vices. 

The imported energy l  can be distributed into different appliances, through 

which the various services can be provided using different energies: 

 

1,1 1,1 1, 1, 1, 1, 1 1

,1 ,1 , , , ,

,1 ,1 , , , ,

... ...

... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ...

... ...

T

m m NM NM

l l l m l m l NM l NM l m

NL NL NL m NL m NL NM NL NM NL NM

c c c d g

c c c d g

c c c d g

  

  

  

    
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    
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where  ,l mc  is a distribution factor describing the proportion of energy l  con-

sumed by appliance 
,APl m

 to provide service m . Obviously, there exists 

,

1

1
NM

l m

m

c
=

= . 
,l m  is the efficiency of appliance 

,APl m
.  

The capacities of the CS, SS, and FS parts of service m  are denoted as mcs , 

mss  and 
mfs , respectively. 

 =m m m m m m mcs ss fs g       
 (7.21) 

where 
m , 

m  and 
m  denote the proportions of the three parts for service m , 

and 1m m m  + + = . 
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8  Multi-phase Risk Modeling and Evaluation of 
Multi-energy Systems under Windstorms 

8.1 Introduction 

The above chapters mainly focus on the risk modeling and analysis of multi-

energy systems under normal weather conditions. In the past few decades, climate 

change has increased the frequency and severity of windstorms and hurricanes [1, 

2]. Considering the effects of severe weather, the resilient operation of MESs can 

be threatened, which may lead to long-duration interruption of energy supplied to 

consumers [3]. It is reported that the catastrophic outages in Texas on 1st February 

2011 resulted from windstorms [4]. Considering the impacts of unexpected wind-

storms, several electrical components can be out of service, including substations 

and electric lines. Due to the electric supply interruptions caused by windstorms, 

several electric-driven components in the gas system could not maintain the nor-

mal operation. Under these circumstances, more than 4.4 million energy users’ en-

ergy consumption (i.e. heat, gas and electricity) was greatly affected during the 

long-duration blackout [4]. Therefore, considering the dramatic consequences of 

severe weather, the study on the risk of integrated energy infrastructure systems 

has drawn more and more attention nowadays.  

With respect to energy infrastructure systems, the risk of power systems [10, 

13], gas systems [15], and heat systems has been studied independently. Several 

scholars in electrical engineering concepts focused on the risk modeling and eval-

uation of power systems using data-based statistical methods [5, 6] and simulation 

techniques [13, 14]. Based on the historical outage data, reference [5] estimates 

the effects of tree trimming on power systems risk under hurricanes using statisti-

cal methods. In reference [6], the accelerated failure time models are utilized to 

estimate the risk of power grids in terms of power outage durations during hurri-

canes. Regarding simulation techniques, a three-stage framework is proposed in [7] 

to analyze the time-dependent risk of power systems under hurricane hazards. 

Reference [8] presents a methodology for the spatial and regional risk assessment 

of power systems affected by severe windstorms. In reference [9], a simulation 

framework is proposed to assess the risk of power transmission grids subject to 

cascading failures under high winds and lightning. At the same time, many schol-

ars focused on the risk assessment of gas systems. Reference [10] presents a per-

formance assessment methodology to evaluate the risk of natural gas systems con-

sidering the impacts of the earthquake. It can be concluded that the previous 

studies are more focused on the risk assessment of a single energy system without 

considering the energy interactions. Actually, the dependent and coupling rela-

tionship between different energy carriers in the MESs would definitely influence 

the risk of the energy systems, which could not be captured and characterized by 

the technique in previous studies. Hence, a comprehensive framework needs to be 

developed to evaluate the risk of MESs with the consideration of the interactions 

among different energy subsystems. 
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In order to quantify the risk performance of energy systems, various indices 

have been proposed in previous studies. For example, the risk is quantified using 

the area between the real and target performance curves in [10], [11], and [12]. In 

reference [8], power system risk is measured by the expected energy losses com-

pared to the pre-event states, while reference [11] measures the system risk using 

the recovery speeds from post-event degraded states to pre-event states. In refer-

ences [13] and [14], system risk is quantified by the area between the real and tar-

get performance curves. However, the previous studies usually adopt system-wide 

indices to represent the risk performances of MESs without considering the loca-

tional difference of risk. Due to the limited transmission capacity and the uneven 

distributions of energy sources and demands, the impacts of severe weather on the 

risk of MESs can differ at various nodes [15]. Therefore, new evaluation metrics 

need to be proposed to quantify the nodal risk performance in different energy 

subsystems of MESs. 

For calculating the risk indices, the primary issue is to assess the energy losses 

of MESs at different time steps following the extreme event. The optimal power 

flow model that aims to minimize the load curtailment costs is utilized in [8], [16], 

and [1] to evaluate the electric losses during hurricanes. Reference [17]  proposes 

an optimal gas and power flow model to calculate the energy losses based on the 

minimization of gas and electric curtailment costs. For the optimal energy flow 

models in the previous studies, the total curtailment costs of energy carriers usual-

ly serve as the objection function without subdividing the specific services of dif-

ferent energy. Actually, the energy consumers in MESs are more focused on the 

energy-related service instead of different energy carriers. For example, the con-

sumers are more concerned with the availability of space heating rather than 

where the heat comes from, e.g. produced through electrical heat pumps or direct-

ly from district heating networks. Under this circumstance, the energy-based op-

timal analysis model cannot characterize the identical service for different energy 

carriers, which may lead to impractical simulation results. Therefore, a service-

based optimal energy flow model is necessary for practically evaluating the ener-

gy losses of MESs under windstorms. 

In order to address the aforementioned research gaps, this chapter aims to 

evaluate the nodal risk of MESs considering the interactions between different en-

ergy carriers, where the impacts of high winds on component and system opera-

tion are modeled during windstorms. The whole process of windstorms is divided 

into four phases: (i) pre-disturbance phase, (ii) disturbance progress phase, (iii) 

post-event degradation phase, and (iv) system restoration phase. The innovative 

contributions of the study are summarized as: 

(1) A comprehensive framework is proposed to evaluate the impacts of wind-

storms on the risk of MESs considering the interactions among different en-

ergy carriers. To model the time-dependent performance levels of MESs at 

different phases, the multi-phase performance response curve is utilized. Be-

sides, the Monte-Carlo simulation (MCS) method is introduced to model the 
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chaotic failures and restoration of components according to the weather ex-

tent. 

(2) Nodal risk metrics for different energy subsystems are defined to quantita-

tively evaluate the risk of MESs. The proposed metrics include the expected 

energy losses, collapse ratio, and recovery ratio, which can describe the ex-

pected level and instantaneous characteristics of risk in MESs. 

(3) A modified optimal energy flow model is proposed to practically assess the 

energy losses of MESs considering the energy-related services of different 

consumers. The proposed model aims to minimize the total costs of energy 

services rather than energy carriers under windstorms by coordinating the 

energy production adjustment among different energy subsystems. 

The chapter includes research related to multi-phase risk analysis of multi-

energy systems under windstorms by [18].  

8.2 Risk of multi-energy systems under windstorms 

8.2.1 Illustration of multi-phase risk in multi-energy systems 

In order to illustrate the multi-phase risk of the MESs, the performance re-

sponse curve is utilized to quantify the risk level of MESs [7, 11], as shown in Fig. 

8.1. The performance response curve denotes the performance level change of 

MESs with time following the disturbance events. The performance levels of 

MESs Per( )t  can be measured by different metrics, such as the number of func-

tional components or the amount of energy supplied in the disasters.  

Time
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Phase II Phase III Phase IV

Disturbance 

progress

Post-event 

degraded 

state

Restora tive  

state

Pre-disturbance 

resilient state

Post-restoration 
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100

I

0 t0 t1 t2 tE

Disturbance

Phase I
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Fig. 8.1. Illustration of the multi-phase performance response curve of MESs. 
 

Four phases can be seen in the multi-phase performance response curve of 

MESs of Fig. 8.1, namely [19]: 
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1) Phase I, the pre-disturbance phase (  00,t t ) represents the disaster pre-

vention of MESs from normal operation to the onset of random failures. In this 

phase, the initial performance level of MESs Per( )t  is 100% before the disturb-

ance events occur at 
0t .  

2) Phase II: disturbance progress phase (  0 1,t t t ) reflects the absorptive ca-

pacity of MESs to resist the impacts of initial failures. During this phase, the sys-

tem operator will re-dispatch all the available resources (e.g. generation units, gas 

sources, and energy loads) for the reliable operation of MESs. Under this circum-

stance, the performance level of MESs Per( )t  can decrease from 100% to I  

when time t  changes from 0t  to 1t .  

3) Phase III: post-event degraded phase (  1 2,t t t ) represents the time dura-

tion for designing the disaster recovery plan. In this phase, the performance level 

Per( )t  resides at the post-disturbance degraded state I  for some time before the 

restoration is initiated at 2t .  

4) Phase IV: restoration phase (  2 , Et t t ) represents the recovery process of 

MESs during which the repair crews are dispatched to implement disaster recov-

ery plans. With the restoration of damaged components, the performance level 

Per( )t  of MESs will recover from I  to the normal operation level 100%.  

Based on the illustration of the multi-phase performance response curve, the 

expected performance loss ( EPL ) is defined to represent the risk of MESs with 

the trapezoid area marked in a shadow of Fig. 8.1 [12], which can be expressed as:  

 
 

0

0

1 Per( )
E

E

t

t

t

t

t dt
EPL

dt

=

=

−
=



  (8.1) 

The risk indicator EPL  describes the average performance losses of MESs 

considering both the intensity and duration of windstorms. Larger EPL  values 

indicate lower risk whereas smaller EPL  values imply higher risk [20]. Moreo-

ver, in order to describe the instantaneous variation of performance levels in 

MESs, the collapse ratio CR  in phase II and the recovery ratio RR  in phase IV are 

defined in this chapter.  

The collapse ratio CR  in the disturbance progress phase reflects how fast the 

performance levels of MESs drop, which can be calculated as:  

 
 

 0 1

Per( )
,

d t
CR t t t

dt
=    (8.2) 

The recovery ratio RR  in the restorative phase reflects how promptly the 

MESs can restore to their initial performance level, which can be calculated as:  

 
 

 2

Per( )
, E

d t
RR t t t

dt
=    (8.3) 
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8.2.2 The outline to evaluate the multi-phase risk of multi-energy 

systems 

Based on the multi-phase performance response curve in Fig. 8.1, the outline 

to evaluate the risk of MMESs is illustrated in Fig. 8.2. During all the phases of an 

event, the impacts of weather extent (i.e. wind speeds) on the component failures 

and the re-dispatch of MESs are modeled. In the pre-disturbance phase (i.e. phase 

I), the failure models of components are introduced to characterize their failure 

probability related to wind speeds. Due to the component failures caused by wind-

storms, a service-based optimal energy flow model is developed in the disturbance 

progress phase (i.e. phase II) to assess the performance losses of MESs. The dura-

tion of the post-event degraded phase (i.e. phase III) is determined according to 

the intensity of component damage caused by windstorms. In the restoration phase 

(i.e. phase IV), the weather-related restoration model is applied to determine the 

repair time of components based on the damage intensity.  

 

Fig. 8.2. The schematic diagram for illustrating the risk evaluation of MESs. 

 

In order to model the chaotic failures influenced by severe weather, the MCS 

method is then introduced in this chapter. For different initial disturbances sam-

pled by the MCS method, the time-dependent performance levels of MESs at dif-

ferent phases can be determined using the previous risk analysis model. On this 

basis, nodal risk metrics for different energy subsystems can be calculated to 

quantify the regional risk of MESs considering the impacts of windstorms, includ-

ing the expected energy losses, collapse ratio, and recovery ratio. The proposed 



164  

 

 

metrics can describe the expected level and instantaneous characteristics of risk in 

MESs. On the one hand, the expected energy losses are used as quantitative indi-

cators to evaluate the average risk performance of MESs under windstorms. On 

the other hand, the collapse and recovery ratios can capture the degradation and 

restoration features of risk in MESs, i.e. how fast the system performance drops 

when the weather event hits MESs and how long the system recovers to its initial 

state, respectively. 

8.3 Risk modeling of MESs under windstorms 

Due to the interactions between different energy carriers, the component fail-

ures caused by high winds in electric systems can also lead to gas or heat interrup-

tions in the other energy subsystems. Based on the previous illustration of the mul-

ti-phase performance response curve of Fig. 8.1, the risk of MESs is studied in this 

section.  

8.3.1 Phase I: pre-disturbance phase 

During phase I, the MESs continue the normal operation until the disturbance 

events (i.e. windstorms) occur at 
0t . Under windstorms, the components in the 

electric network can suffer different extents of damage due to their different work-

ing characteristics. Generally, the components in an electric network can be classi-

fied as transmission lines (i.e. overhead lines, underground cables) and electrical 

substations. In this section, the failure models of different components considering 

the impacts of windstorms are illustrated. 

(1) Risk model of overhead lines 

In order to model the fragility of overhead lines to high winds, the fragility 

curve is introduced here, which characterizes the relationship between the failure 

probability of overhead lines and their surrounding weather extent (e.g. wind 

speeds) [11]. On this basis, the weather-dependent and time-dependent failure 

probability of overhead lines can be determined by mapping the profile of wind 

speed to the fragility curve. As illustrated in [1], a generic fragility curve can be 

expressed as:  

 ( )

0

_

, if

( ) if

1, if

ij cri

over

ij ij v cri col

col

p v v

p v p v v v v

v v

 


=  




，   (8.4) 

where ( )over

ijp v  denotes the failure probability of overhead lines as the function of 

wind speed v ; 0

ijp  denotes the failure probability of lines under good weather 

conditions; 
_ ( )ij vp v  denotes the relation between failure probability and wind 

speed v  from criv  to colv . 

(2) Risk model of underground cables 
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In contrast to overload lines, the electric cables are usually buried underground, 

which are more resilient to windstorms. Therefore, the failure probability of un-

derground cables has no relation to wind speeds, which can be calculated as:  

 ( ) ,0cab cab

ij ijp v p=   (8.5) 

where ,0cab

ijp  denotes the failure probability of cable ij  under normal conditions.  

(3) Risk model of electrical substations 

To characterize the vulnerability of electrical substations to high winds, the 

fragility functions are introduced in this chapter, which model the relationship be-

tween the failure probability of substations and the weather extent. According to 

[21], the failure probability of substation i  under the given wind speed can be 

evaluated using the following function:  

 ( )
( )ln

subs

i

v
p v






− 
=  

 

  (8.6) 

where  and   are the logarithmic mean and the standard deviation, respectively. 

The set of parameters  and   is related to the structural characteristics and 

layout of a substation. The estimation results of     and    for different layouts 

of substations (open, suburban, light urban and etc.) are provided in [21]. Taking 

the suburban substation as an example, the values of   and   in the fragility 

functions are 5.419 and 0.419, respectively. On this basis, the failure probability 

of a suburban substation for wind speed v  can be determined using the fragility 

functions in (8.6). 

(4) The availability of electrical components 

To model the operation states of electrical components (i.e. lines and substa-

tions) considering the impacts of high winds at different time, the availability vec-

tor AV  is introduced here, which can be expressed as:  

 
 

12 23 1 2[ , , , , , , , , ]

, 0,1

t t t t t t

ij i

t t

ij i

a a a a a a

a a

=



AV L L L
  (8.7) 

where t

ija  denotes the operation state of overhead line ij  or cable ij  at time t ; t

ia  

denotes the operation state of substation i  at time t .  

The operation states of electrical components can be either 0 or 1, where 1 cor-

responds to component connection and 0 corresponds to the component outage. 

Besides, it should be noted that the operation states of components at time t  are 

dependent on the operation states at the previous time steps. In specific, the com-

ponent tripped at time t  will stay failed in the following time steps since no re-

pair crews are dispatched during windstorms for safety reasons [11]. Taking over-

head line ij  as an example, its operation state t

ija  at time t  can be determined 

based on the current failure probability and the previous operation states utilizing 

state sampling techniques [22].  
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where r  is the random number sampled from the uniform distribution in the in-

terval (0,1), which can be represented as (0,1)r U: . The variable r  is generated 

to determine the operation state of line ij , which is not dependent on wind speed 

v . The impacts of weather conditions on the operation state of line ij  can be em-

bodied in the failure probability ( )over

ijp v .  

8.3.2 Phase II: disturbance progress phase 

Due to the chaotic component failures caused by windstorms from 0t  to 1t , 

the MESs will deviate from its normal operation state. Under this circumstance, 

the re-dispatch of power generation and gas sources or load shedding will be 

adopted by system operators for the reliable operation of MESs [15]. In order to 

minimize the consequences caused by windstorms, the modified optimal energy 

flow techniques in (8.8)-(8.28) are proposed in this chapter to determine the re-

dispatch results of MESs at different time t . In this chapter, the performance lev-

els of MESs Per( )t  are measured by the percentage of electric loads, gas loads, 

and heat loads connected to systems.  

Considering the difference in energy services among consumers in different 

sectors, we categorize the consumers into residential, commercial, and industrial 

ones. Table 8.1 shows the primary services of different energy for different energy 

customer sectors based on the statistical data in [23, 24]. Taking electricity as an 

example, the primary services of electricity for residential consumers are electron-

ic appliances (e.g. TV) and lighting. Regarding commercial consumers, their elec-

tricity services mainly consist of heating and lighting. Industrial consumers mainly 

use electricity for product processing and heating.  

Generally, the priority of energy demands can be converted into the corre-

sponding interruption cost to shed loads. For example, the interruption costs of 

lighting can be larger than TV since the lighting is more important. Therefore, the 

objective function is to minimize the total costs of energy load curtailments at 

time t .   

( ) ( ) ( )

( )
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1 1
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 (8.8) 

where t

iszP  and iszC  denote the electric load curtailment and the corresponding 

compensation cost ($/MW) of consumer z  in sector s  at electric node i  and 
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time t , respectively. t

iszL  denotes the electric load curtailment of consumer z  in 

sector s  for the EH connected to electric node i . t

mszW  and 
mszC  denotes the 

gas load curtailment and the corresponding compensation cost ($/m3) of consumer 

z  in sector s  at gas node m  and time t , respectively. t

ish  and 
isC  denotes the 

heat load curtailment and the corresponding compensation cost ($/MW) of con-

sumers in sector s  for the EH connected to electric node i .   denotes the gas 

gross heating value (MW/m3).  t

iLP  denotes the total electric load curtailment at 

electric node i  and time t . t

mLW  denotes the total gas load curtailment at elec-

tric node i  and time t . t

ieL  and t

ihL  denote the electric and gas load curtail-

ments of the EH connected to electric node i  at time t , respectively. 

Table 8.1 Illustration of the primary services of different energy for different en-

ergy customer sectors 
Consumer sector Electricity Gas Heat 

Residential Lighting, electronic appliances Heating, cooking Heating 

Commercial Heating, lighting Heating, equipment driving Heating 

Industrial Product processing, heating Product processing, heating Heating 

 

The optimal energy flow also needs to satisfy the following constraints: 

(1) Constraints of coupled components 

The coupled relationship between different energy carriers in MESs can be de-

scribed by coupled components. Generally, the coupled components in MESs can 

be classified into EH and electric-driven gas sources (EGSs). In this section, the 

operation models of coupled components are illustrated.  

a) Energy hub 

The coupling relationship between inputs and outputs of EH is illustrated in 

Fig. 8.3, which can be expressed as [25]:  

 
( )

0
,

0

,
1 (1 )

t t tt
i i e i EHie ie

t t tt t
i i h i gih ih m EH

v PL L

v vL L F

  

    

     − 
 =    

−    + − −          

  (8.9) 

where t

i  represents the dispatch factor of electricity flow. t

iv  represents the dis-

patch factor of gas flow. e  and h  represent the electrical efficiency and thermal 

efficiency of CHP, respectively.   and g  represent the efficiency of the heat 

pump and gas boiler, respectively. 0

ieL  and 0

ihL  represent the electricity demand 

and heat demand of EH connected to electric node i  in normal conditions, re-

spectively. 
,

t

i EHP  and 
,

t

m EHF  represent the input electricity flow and gas flow to EH 

at time t , respectively. 
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Fig. 8.3. The coupling relationship between inputs and outputs of the energy hub 

The dispatch factor of EH is bounded by:  

 0 1, 0 1t t

i iv      (8.10) 

The energy load curtailments of EH are bounded by:  

 00 t

ie ieL L     (8.11) 

 00 t

ih ihL L     (8.12) 

b) Electric-driven gas sources 

The EGSs in the natural gas network need to get an electric power supply from 

the power system to maintain proper operation. Generally, the power consumption 
t

ikD  of EGS k  is related to its gas production t

mkW , which can be described as 

[15]:  

 t t

ik g mkD W=    (8.13) 

where g  represents the conversion factor of EGSs (MW/m3).  

Considering the impacts of windstorms, the power supply of EGS k  at time 

t  can be determined by the electric load curtailments at the corresponding nodes. 

In order to guarantee the reliable operation of EGSs, the power supplied to EGSs 

needs to be satisfied firstly during contingencies [8]. Therefore, the operation state 
t

mk  of EGS k at gas node m  and time t  can be determined as:  

 

0

0

0, if

1, if

t t

ik iL iLt

mk t t

ik iL iL

D D P

D D P


  −
= 

 −
  (8.14) 

where 
0

iLD  denotes the initial electric load at electric node i  in normal conditions. 

It can be noted that EGS k  will be interrupted when the power 
0 t

iL iLD P−  sup-

plied to EGS is smaller than its power requirement 
t

ikD  for proper operation.  

(2) Natural gas network constraints 

A typical natural gas system consists of gas sources, pipelines, and compres-

sors from gas production to consumption [26]. In addition to EGSs, there are fuel-
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driven gas sources (FGSs) that can supply gas to consumers in natural gas systems. 

During operation, these components need to satisfy the following constraints: 

a) Pipeline flow constraints 

The gas flow t

mnf  through pipeline mn  at time t  can be calculated using the 

Weymouth equation [26], which can be expressed as:  

 ( ) ( )
2 2

t t t t

mn mn mn m nf f M    =  −
  

  (8.15) 

where t

m  and t

n  represent the gas pressures of node m  and node n  at time t , 

respectively. mnM  denotes constant pipeline flow coefficient, which is related to 

the diameter and length of the pipeline, pressure, and temperature of the gas.  

The gas flow through pipeline mn  is also restricted by its pipeline capacity:  

 
t t t

mn mn mnf f f    (8.16) 

where 
t

mnf  and 
t

mnf  represent the maximum and minimum gas flow of pipeline 

mn  at time t , respectively.  

b) Gas flow balance at each node 

Similar to power systems, the natural gas system needs to satisfy the constraint 

that the gas injected into a node must also flow out of the node, which can be ex-

pressed as: 

 
0

,

1 1

( ) 0
M CO

t t t t t t t

mk mk ms mL mL m EH mn c

n c

W W D W F f f
= =

 + − − − − − =    (8.17) 

where t

mkW  denotes the gas production of EGS k  at node m  and time t ; t

msW  

denotes the gas production of FGS s  at node m  and time t ; t

cf  denotes the gas 

flow through compressor c  at time t ; CO  refers to the total number of compres-

sors.  

c) Compressor model  

For compressor stations, the pressure t

m  at the incoming node m  can be pro-

portional to the pressure t

n  at out-coming node n , which is expressed as:  

 t t t

n c m  =    (8.18) 

 
t t t

c c c      (8.19) 

where 
t

c  denotes the compression ratio of compressor c  at time t ; 
t

c  and 
t

c  

represent the maximum and minimum compression ratios of compressor c , re-

spectively.  

d) Gas pressure constraints 

The pressure levels at each node are bounded by:  

 
t t t

m m m      (8.20) 
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where 
t

m  and 
t

m  represent the maximum and minimum gas pressures at node 

m  and time t , respectively.  

e) Gas source production constraints 

The gas production of EGSs and FGSs is constrained by minimum and maxi-

mum levels, which can be expressed as:  

 
t t t

ms ms msW W W    (8.21) 

 
t t t

mk mk mkW W W    (8.22) 

where 
t

msW  and 
t

msW  represent the maximum and minimum production of FGS 

s  at node m  and time t , respectively; 
t

mkW  and 
t

mkW  represent the maximum 

and minimum production of EGS k  at node m  and time t , respectively.  

f ) Gas load curtailment constraints 

The gas load curtailment at each node is bounded by:  

 00 t

mL mLW D     (8.23) 

(3) Electric network constraints 

Due to the impacts of component damages caused by windstorms, the power 

flow through electric systems will be re-dispatched. Therefore, similar to natural 

gas systems, the operation of electric systems needs to satisfy the following con-

straints [27]:  

a) Power flow balance at each node 

 ( )0

,

1

t tN
i jt t t

ig iL iL i EH t
j ij

P D P P
x

 

=

−
− −  − =   (8.24) 

b) Generating unit limits 

 t t t

ig ig igP P P    (8.25) 

c) Line flow constraints 

 

t t

i j t t

ij ijt

ij

a S
x

 −
    (8.26) 

d) Bus phase constraints  

 
t t t

i i i      (8.27) 

e) Electric load curtailment constraints  

 
00 t

iL iLP D     (8.28) 

where t

igP  represents the power output of generator g  at node i  and time t ; 
t

i  

represents the phase angle of node i  at time t ; t

ijx  represents the reactance of 

line between node i  and node j ; t

igP  and t

igP  represents the maximum and mini-
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mum output of generators; t

ijS  represents the power flow limits of line ij ; t

i  and 

t

i  represent the maximum and minimum of phase angle at node i .  

The modified optimal energy flow model under windstorms can be formulated 

as the non-linear optimization problem in (8.8)-(8.28). However, due to the non-

linearity of the pipeline equation in (8.15), the feasible region of the optimal ener-

gy flow model can be nonconvex which will challenge the global optimality. 

Therefore, the piecewise linearization techniques are introduced in this chapter to 

linearize the pipeline equation [28]. Then, the proposed model is converted into a 

linear programming (LP) problem, which can be solved by the Cplex solver. 

8.3.3 Phase III: post-event degraded phase 

After the windstorm is ended at 1t , the system operator will start to make re-

covery measures about how the MESs are restored. Besides, the restoration re-

sources need to be allocated, including repair crews, vehicles, equipment, and 

some replacement components [7]. In this phase, the performance level of MESs 

resides at the post-disturbance degraded state I  until the restoration is initiated at 

2t . Generally, the duration of the post-event degraded period is related to the ex-

tent of component damages caused by windstorms [11]. If the windstorms affect 

wider areas or lead to larger losses in MESs, the time needed for the implementa-

tion of recovery measures can be relatively longer.  

In order to characterize the impacts of component damage on the measure-

making, the duration of post-event degraded period 2 1t t−  can be assumed as the 

function of wind speed v  [11], which is expressed as:  

 ( )2 1

normal

dt t v T− =    (8.29) 

where normal

dT  refers to the mean time needed for measure-making under normal 

weather, which is assumed to be 3h. ( )v  is multiplying operator to model the 

positive relationship between period duration and wind speeds.  

8.3.4 Phase IV: restoration phase 

Based on the predetermined recovery measures in phase III, the restoration of 

MESs is initiated at 2t . It should be illustrated that no restoration is implemented 

during windstorms due to safety reasons, so the repair crews are dispatched only 

in the restoration phase [11]. Moreover, it will take more time for repair crews to 

restore the damaged components for higher wind speeds [9]. Therefore, a weather-

related restoration model is introduced to calculate the repair time of damaged 

components TTR : 

 ( ) normalTTR v MTTR=    (8.30) 

where normalMTTR  denotes the mean time to repair damaged components under 

normal weather, which is assumed to be 2h for lines and 8h for substations. ( )v  
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represents the multiplying operator to model the increasing repair time for higher 

component damage caused by larger wind speeds.  

During the restorative phase from 2t  to Et , this chapter adopts a random resto-

ration strategy, where the damaged lines and substations are randomly selected to 

repair. For time t  in phase III, the damaged component for repair and its corre-

sponding repair time TTR  will be determined utilizing state sampling techniques. 

Therefore, the performance levels of MESs at time t  can then be evaluated.  

8.4 Framework for risk evaluation of MESs utilizing Monte Carlo 

simulation 

8.4.1 Nodal risk metrics 

According to the illustration of the multi-phase performance response curve in 

section 2.2, different metrics are defined to quantify the nodal risk of MESs under 

windstorms, including the expected energy load curtailments, the collapse ratio, 

and the recovery ratio of energy supply level [11]. After the simulation, the ex-

pected electric load curtailments ( iEELC ) at electric node i , expected gas load 

curtailments ( mEGLC ) at gas node m  and expected heat load curtailments 

( iEHLC ) at electric node i  in MESs for  0, Et t  can be calculated as:  
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where t  denotes the time interval for the risk re-evaluation of MESs, which is 

assumed as 1h. b  denotes the total number of re-evaluations, which equals to 

Et t . ST  represents the total simulation times of MCS.  

After obtaining the expected energy load curtailments at different nodes, the 

system’s EELC , EGLC  and EHLC  can be calculated based on the following 

equations:  
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To quantify the overall risk of MESs, the synthetic energy loss ( SEL ) is pro-

posed by incorporating the load curtailments in different energy subsystems. After 

unifying the units of electricity, gas, and heat, the SEL  of MESs can be calculated 

using the following equation:  
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  (8.37) 

where   denotes gas gross heating value.  

Regarding the instantaneous variation of system energy supply level, the col-

lapse ratios and recovery ratios in MESs are defined. During disturbance progress 

for  0 1,t t t , the collapse ratio of electricity ( CRE ), gas ( CRG ), and heat 

( CRH ) supply level can be calculated using the different methods [29], which 

can be expressed as:  
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Similarly, the recovery ratio of electricity ( RRE ), gas ( RRG ), and heat 

( RRH ) supply level for  2 , Et t t  can be calculated as:  
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8.4.2 Simulation procedures 

As illustrated in Fig. 8.4, the procedures for risk evaluation of MESs can be 

divided into four steps. The first step is the initialization of MESs, where the ini-

tial parameters are set. On this basis, the initial operation states of MESs can be 

obtained.  

The second step is the risk simulation of MESs considering the impacts of 

windstorms with t  temporal resolution from 0 to Et . As illustrated in section 

2.2, the process for the risk evaluation of MESs consists of four phases. During 

phase I for  00,t t , the MESs continue normal operation until the windstorms 

occur at 0t . The failure probability of overhead lines, underground cables, and 

electrical substations can be determined according to wind speeds using (8.4), (8.5) 

and (8.6), respectively. During phase II for  0 1,t t t , the operation states of elec-

trical components AV  can be obtained using MCS techniques. For certain com-

ponent failures, the energy supply levels of MESs can be calculated using the op-

timal energy flow model in (8.8)-(8.28). During phase III for  1 2,t t t , the MESs 

will reside at the post-disturbance degraded state until the recovery measure is ini-

tiated at 2t . The time duration 2 1t t−  of phase III can be determined using (8.29) 

according to wind speeds. During phase IV for  2 , Et t t , the damaged compo-

nent for repair and its corresponding repair time TTR  can be determined using 

(8.30). Considering the implementation of recovery measures, the energy supply 

restoration of MESs can be calculated using the optimal energy flow model in (8.8)

-(8.28). On this basis, the energy supply levels of MESs under windstorms can be 

characterized as the function of time t .  

The third step is to repeat the previous procedures until the stopping criterion 

of the MCS technique is satisfied. The stopping criterion provided for the MCS 

technique is the variation coefficient of risk metrics, which can be calculated as:  

( ) ( ) ( )( )max , ,V EELC EELC V EGLC EGLC V EHLC EHLC =   (8.44) 

where ( )V EELC , ( )V EGLC  and ( )V EHLC  are the variances of EELC , 

EGLC  and EHLC , respectively.  

Based on the energy load curtailments for each simulation time, the fourth step 

is to calculate the risk metrics of MESs using (8.31)-(8.43).  
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Fig. 8.4. Simulation procedures for risk evaluation of MESs utilizing the MCS 

technique 
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8.5 Case studies and discussions 

8.5.1 Descriptions of test systems and simulation data 

The proposed techniques and models are applied to evaluate the risk of MESs 

composed of IEEE 33-bus system from [30] and 20-node gas system detailed in 

[31], as shown in Fig. 8.5. The IEEE 33-bus electric system is composed of 7 gen-

erating nodes, 32 load nodes, 37 lines, and 6 DERs. The lines 23-24, 24-25, 14-15, 

16-17, 4-5, and 8-9 are assumed as underground cables. On the other hand, the 20-

node gas system has two EGSs, one FGS, three gas compressors, and 19 pipelines. 

The EGSs W1 and W2 at gas nodes 8 and 5 are supplied from power flow at elec-

tric nodes 18 and 19. In addition, 7 EHs are plugged into electric nodes 24, 25, 7, 

8, 30, 14, and 33 in the electric network and gas nodes 6, 7, 15, 16, 12, 19, and 20 

in the gas network.  
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Fig. 8.5. Test system composed of IEEE 33-bus system and 20-node gas system 

 

The physical parameters of gas compressors (such as maximum and minimum 

compression ratio), pipelines (such as diameter and length), and gas sources (such 

as production capacity) can be found in [31]. The generating capacity of DERs in 

the electric network is set as 1MW. Regarding EH, the electrical efficiency e  and 

thermal efficiency h  of CHP are 0.4 and 0.45, respectively [32]. The heat pump 

efficiency   is assumed to be 3 [32]. The efficiency of gas boiler g  is assumed 

as 0.85. The heat demand 
0

ihL  of EH at node i  is assumed to be 0.9 times the 

corresponding electricity demand 
0

ieL . The gas gross heating value   is set as 8.4 

KW/m3 [15].  

Based on the categories of energy services in Table 8.1, it is assumed that the 

proportions of residential, commercial, and industrial consumers at each node are 
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35%, 35%, and 30%, respectively. The proportions of electricity and gas services 

are set as 50% in the respective customer sectors. The interruption costs of the en-

ergy services for different customer sectors are shown in Table 8.2, which are as-

sumed according to the analysis results in [15]. It should be noted that the com-

pensation costs are identical for electricity, gas, and heat with the same services. 

For instance, since electricity and heat can both be used for heating in the com-

mercial sectors, their compensation costs are identical. Besides, the units of gas in-

terruption costs are converted into $/103m3 using gas gross heating value  . 

Table 8.2 The interruption costs of energy services for different energy customer 

sectors 

Consumer 

sector 
Electricity ($/MW) Gas($/103m3) Heat($/MW) 

Residential 
Lighting (5000), electron-

ic appliances (4000) 

Heating (4000/8.4),  

cooking (5000/8.4) 
Heating (4000) 

Commercial 
Heating (8000),  

lighting (10000) 

Heating (8000/8.4), equipment 

driving (10000/8.4) 
Heating (8000) 

Industrial 
Product processing 

(5000), heating (4000) 

Product processing (5000/8.4), 

heating (4000/8.4) 
Heating (8000) 

 

Regarding the risk evaluation of MESs, the wind fragility curves of overhead 

lines can be found in [11]. The overhead line failure probability can be determined 

with the fragility curves for higher wind speeds ( 20m sv  ) whereas the line 

normal failure probability 0.005 is used for normal weather conditions 

( 20m sv  ) [8]. The failure probability of underground cables is assumed to be 

0.005. It is assumed that all the components are online at the beginning of the 

simulation until the windstorms hit MESs at 10h. The duration 1 0t t−  of wind-

storms is assumed to be 12h, with an hourly time t  risk re-evaluation of MESs. 

During phase III, the mean time normal

dT  needed for measure-making under normal 

weather is assumed as 3h. During phase IV, the mean time to repair damaged lines 

and substations under normal weather normalMTTR  is assumed as 2h and 8h.  

The hourly time scale t  is selected to make a balance between simulation 

accuracy and computation time [1]. In specific, the time scales for assessing the 

risk of MESs are closely related to the different characteristics of electricity and 

gas networks as well as the EH [33]. Generally, the time scale for assessing the 

risk of the electric network can become much smaller than that for a CHP unit of 

EH. Nevertheless, the computation burden can also increase significantly with the 

decrease in time scales. Therefore, the time scales to evaluate the risk of MESs are 

set as one hour by weighing up accuracy and efficiency. Moreover, it should be 

noted that a smaller time scale can be adopted in the proposed framework if re-

quired. 
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8.5.2 Case studies 

Case 1: Risk evaluation of MESs under the impacts of grid-scale windstorms 

In this case, the wind speeds in three areas are the same and three scenarios 

with different weather extents v  are analyzed, including 31m/s, 36m/s, and 41m/s 

wind speeds. The wind speeds in the three scenarios are selected according to the 

classification of storms, which can be found in [8]. In practical application, the 

wind speeds of storms can be preset by readers as required. According to the fra-

gility curves in [8], the failure probability of overhead lines is 0.05, 0.10, and 0.20 

corresponding to 31m/s, 36m/s, and 41m/s wind speeds, respectively.  

In order to model the increasing repair time due to wind speeds, the multiply-

ing operator ( )v  is determined by uniformly sampling within a pre-determined 

range (i.e. ( )  1 2,v h h : ). In this application, the range  1 2,h h  is  2,3  for 

30 40v   and  3,4  for higher wind speeds. Similarly, the multiplying operator 

( )v  in (8.29) can be determined by utilizing uniform sampling techniques to 

model the impacts of wind speeds on the duration of phase III 2 1t t− .  

 

Fig. 8.6. Energy supply level of MESs as a function of time for different wind 

speeds. a) Electricity supply level. b) Gas supply level. c) Heat supply level. 

 

The electricity, gas, and heat supply level considering the impacts of wind-

storms for different wind speeds (i.e. 31m/s, 36m/s, and 41m/s) are given in Fig. 

8.6. It can be noted that the shapes of the energy supply level curves recall the re-

sponse curve of Fig. 8.1, where the four phases of risk evaluation can be distin-

guished: pre-disturbance phase, disturbance progress, post-event degraded phase, 

and restoration phase. Based on the variation of energy supply levels with time in 

Fig. 8.6, the nodal risk indices ( iEELC , mEGLC  and iEHLC ) for different wind 

speeds are presented in Fig. 8.7. It should be noted that only the risk values asso-

ciated with the energy nodes can be obtained via the simulation. With respect to 

the remaining points, their risk values are estimated based on the obtained values 

at different energy nodes using interpolation methods. From subpictures (a)-(c) of 

Fig. 8.7, it can be noted that there are huge differences between nodal risk indices 

at different nodes. Taking the electric system as an example, the values of iEELC  

at electric node 21 are the largest among all nodes, which are 0.344, 0.599, and 

0.796 for 31m/s, 36m/s, and 41m/s wind speeds, respectively. In contrast, the val-
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ues of iEELC  at electric nodes 30, 8, and 9 are relatively small for all scenarios. 

This is mainly because the demands at electric nodes 30, 8, and 9 can obtain elec-

tricity supply from EH under severe weather.  

 

Fig. 8.7. Expected energy load curtailments at different nodes for different wind 

speeds. a-c) Heat maps of MESs showing the distribution of nodal EELCi and 

EGLCm for 31m/s, 36m/s and 41m/s wind speeds, respectively d) Nodal EHLCi for 

different wind speeds 

 

Besides, we also sort the nodal risk indices iEELC  and mEGLC  from the big-

gest to the smallest, as shown in Fig. 8.8. The electric nodes with the top 50% of 

iEELC  and the gas nodes with the top 30% of mEGLC  are marked with node 

numbers. This is mainly because these nodes with larger demands are relatively 

far away from energy resources. Under this circumstance, the power is more diffi-

cult to be transported from generators to consumers under windstorms, consider-

ing the operating constraints of power systems. It can be noted that the increase in 

wind speeds has a relatively small impact on the ranking of nodal risk indices in 

both gas and power systems. For example, the electric nodes with the top three 

nodal iEELC  in power systems are all nodes 21, 22, and 20. The findings can 
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help us improve the risk of MESs by hardening the electrical components at nodes 

with larger risk indices. 

 

Fig. 8.8. Ranking of nodal risk indices for different wind speeds. a) Ranking of 

nodal EELCi  b) Ranking of nodal EGLCm 

 

The system risk metrics of different energy carriers for different wind speeds 

are presented in Fig. 8.9. It can be clearly seen that the increase in wind speeds 

can significantly reduce the system risk of MESs. For storms with larger wind 

speeds, the expected energy load curtailments and the collapse ratios both increase 

significantly, whereas the recovery ratios tend to decrease. The values of EGLC 

are 0.099, 0.234, and 0.368 for 31m/s, 36m/s, and 41m/s wind speeds, respectively, 

indicating that more gas loads will be interrupted for larger weather extent. When 

wind speeds v  change from 31m/s to 41m/s, the values of CRG increase from 

0.038 to 0.061, whereas the values of RRG decrease from 0.006 to 0.003. This 

means that the MESs will break down more rapidly in phase II and recover to 

normal operation more slowly in phase IV for higher wind speeds.  

Regarding the comparison of system risk between different energy carriers, we 

can find that the losses of heat supply caused by windstorms are smaller than those 

of power supply and gas supply, indicating the heat system is relatively more resil-

ient to windstorms than the other two systems. As shown in Fig. 8.9, there is 88.1% 

of heat loads supplied by MESs after the attacks of storms with 41m/s wind speed, 

whereas there are only 53.8% electricity loads and 39.2% gas loads connected af-

ter windstorms. Moreover, the values of CRH are much smaller than those of CRE 

and CRG for different wind speeds. This is mainly because the heat demands of 

MESs are simultaneously supplied by electricity and gas through EH. When the 

power system cannot supply sufficient electricity to the heat pump of EH for con-
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tingency states, the gas system can increase gas injection to CHP units and the gas 

boiler of EH to satisfy heat demands. 

 

Fig. 8.9. Risk metrics of MESs for different wind speeds. a) Electric risk metrics. 

b) Gas risk metrics. c) Heat risk metrics 

 

In this case, the system risks of MESs and isolated electric systems (IES) un-

der different wind events are also compared. As seen in the subpicture (a) of Fig. 

8.6, the power system in MESs is more resilient than IES under the same wind-

storms, which is shown in the expected energy losses, collapse ratios, and recov-

ery ratios. The subpicture (a) of Fig. 8.9 illustrates the comparison of risk metrics 

between MESs and IES for different wind speeds. Firstly, windstorms can cause 

more electricity load losses in IES than those in MESs. For storms with 41m/s 

wind speed, the EELC in IES can reach 0.696, which is over two times that in 

MESs with the value of 0.289. Moreover, the MESs can better resist disruptive 

events in phase II and more quickly recover from a degraded state in phase IV 

compared to IES. For instance, the values of CRE in IES are nearly two times 

those in MESs for 31m/s, 36m/s, and 41m/s wind speeds. The main reason to ac-

count for this phenomenon is that the gas system can increase gas injection to 

CHP units of EH to satisfy the electric demands in MESs for contingency states. 

To further show the impacts of energy interaction on the overall risk of MESs, 

the synthetic energy loss (SEL) of MESs is compared with that of isolated energy 

subsystems (IESS) for different wind speeds, as shown in Table 8.3. It can be not-

ed that the energy interaction can improve the risk of MESs for smaller wind 
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speeds, since the SEL values of MESs and IESS are 0.0795 and 0.0934 for v = 31 

m/s, respectively. In contrast, the risk of MESs can be reduced compared to IESS 

for larger wind speeds due to the interaction between different energy carriers. 

This is mainly because the EGSs can obtain sufficient power supply in most time 

of phase I when MESs are hit by storms with small wind speeds. Under this cir-

cumstance, the gas system can provide adequate gas for EH to produce electricity 

and heat for MESs. Instead, for storms with larger wind speeds, the EGSs may 

stop working due to inadequate power supply at the beginning of phase I. Due to 

the reduction of gas supply, the EH will correspondingly reduce the energy pro-

duction for MESs. 

Table 8.3 Comparison of SEL between MESs and IESS for different wind 

speeds 

Test systems v = 31 m/s v = 36 m/s v = 41 m/s 

MESs 0.0795 0.1750 0.2781 

IESS 0.0934 0.1667 0.2369 

 

The computation time for the risk evaluation of MESs for different wind 

speeds is shown in Table 8.4 to show the efficiency of the proposed method. It can 

be noted that the average computation time of the optimal energy flow model 

ranges from 4s to 5s for all wind speeds. Nevertheless, the total computation time 

for obtaining the results increases a lot with the increase in wind speeds. This is 

mainly because the MESs can recover quickly to the normal operation level in 

phase III for smaller wind speeds. Under this circumstance, the average number to 

calculate the optimal power flow per sample is relatively small for 31m/s wind 

speeds. 

Table 8.4 The computation time of risk evaluation for different wind speeds 

Wind speeds 
Average computation time of op-

timal energy flow model (s) 

Average computation 

time per sample (s) 

Total calculation 

time (s) 

v = 31 m/s 4.61 35.40 43152.60 

v = 36 m/s 4.67 49.33 66348.85 

v = 41 m/s 4.58 66.78 80336.34 

 

Case 2: Risk analysis of MESs under the impacts of region-scale windstorms 

In order to model the region-scale windstorms, the windstorms are assumed to 

only hit one area of the test system in Fig. 8.5. On this basis, the initialization of 

wind speeds in different areas is given in Table 8.5. Firstly, it should be noted that 

20m sv =  corresponds to normal weather conditions with a 0.005 line failure 

probability. Therefore, the windstorms are assumed to only hit areas 1, 2, and 3 of 

MESs corresponding to scenarios A, B, and C, respectively. Moreover, there also 

exist region-scale windstorms whose wind speeds in different areas can differ. As 

shown in scenario D, the wind speeds of storms are therefore assumed as 41m/s, 

31m/s, and 20m/s for areas 1, 2, and 3, respectively. Besides, the techniques to de-
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termine the repair time TTR  of damaged components and the duration of phase III 

are in accordance with those in case 1.  

Table 8.5 Illustration of four scenarios with different regional wind speeds 

Wind speeds (m/s) Scenario A Scenario B Scenario C Scenario D 

v1 41 m/s 20 m/s 20 m/s 41 m/s 

v2 20 m/s 41 m/s 20 m/s 31 m/s 

v3 20 m/s 20 m/s 41 m/s 20 m/s 

The electricity, gas and heat supply levels considering the impacts of wind-

storms for different scenarios are given in Fig. 8.10. Similar to case 1, the shapes 

of the energy supply level curves recall the response curve of Fig. 8.1. On this ba-

sis, the risk metrics for different scenarios are given in Table. 8.6. Regarding elec-

tric systems, it can be noted that more electric losses are caused when windstorms 

hit area 3. The values of EELC in MESs are 0.0391, 0.0402, 0.1163, and 0.0819 

for scenarios A, B, C, and D, respectively. This is mainly because the DERs in ar-

ea 3 account for nearly 50% of total generation capacity. Regarding natural gas 

systems, the simulation results of scenario A show that the windstorms can lead to 

more gas losses when windstorms hit area 1. The value of EGNS is only 0.0543 

for scenario C and increases to 0.1731 for scenario A. This is mainly because the 

electric-driven gas source W2 at node 8 accounts for over 50% production capaci-

ty in natural gas systems. The windstorms in area 3 can lead to the interruption of 

power supplied to W2. In accordance with case 1, there is only a small fraction of 

heat loss caused by windstorms for all scenarios in case 2.  

Based on the simulation results in Table. 8.6, we can draw the conclusion that 

the risk in area 3 of MESs is the lowest considering the impacts of region-scale 

windstorms. Therefore, it is an effective measure to harden electrical components 

in area 3 for improving the risk of MESs. 

 

Fig. 8.10. Energy supply level of MESs as a function of time for different scenari-

os. a) Electricity supply level. b) Gas supply level. c) Heat supply level 

 

Table 8.6 System risk metrics of MESs for different scenarios in case 2 

Energy carriers Risk metrics Scenario A Scenario B Scenario C Scenario D 

Electricity 

EELC 0.0391  0.0402  0.1163  0.0819  

CRE 0.0114  0.0115  0.0208  0.0202  

RRE 0.0018  0.0022  0.0027  0.0021  

Gas 
EGLC 0.1731  0.0024  0.0543  0.2009  

CRG 0.0369  0.0014  0.0109  0.0362  
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RRG 0.0072  0.0002  0.0014  0.0046  

Heat 

EHLC 0.0023  0.0003  0.0036  0.0045  

CRH 0.0011  0.0002  0.0010  0.0010  

RRH 0.0002  0.0001  0.0002  0.0001  

Case 3: Correlation analysis between risk and economy 

In the previous cases, the risk of heat subsystems is improved at the cost of in-

creased investment, since gas boilers, heat pumps, and CHPs are introduced to 

supply heat. In order to show the correlation between risk and cost, two scenarios 

are introduced with different components contained in EH. Scenario A is the base 

case with the largest cost, where the EH contains gas boilers, heat pumps, and 

CHP. In scenario B, only the CHP is introduced in EH to supply heat. In accord-

ance with case 1, the risk of MESs in these two scenarios is evaluated under grid-

scale windstorms with 31m/s, 36m/s, and 41m/s wind speeds. The techniques to 

determine the failure probability of components, the repair time TTR   of damaged 

components, and the duration of phase III are identical to those in case 1.  

The risk metrics of MESs are compared between two scenarios for different 

wind speeds, as shown in Table 8.7. It can be noted that the values of EHLC in 

scenario B are much larger than those in scenario A, indicating that the removal of 

gas boilers and heat pumps in EH can significantly reduce the risk of heat subsys-

tems. The EHLC values in scenario B are 2.69, 5.76, and 6.01 times than those in 

scenario A for 31m/s, 35m/s, and 41m/s wind speeds, respectively. The findings 

reveal the inverse correlation between system risk and cost. Moreover, the remov-

al of elements in EH has little effect on the risk of electric and gas systems, since 

the change of EELC and EGLC values are small from scenarios A to B. Further-

more, the values of EELC in scenario B are smaller than those of IES, whose risk 

metrics are given in Fig. 8.8. The results show that the CHP units can significantly 

improve the risk of power systems compared to gas boilers and heat pumps. 

Table 8.7 System risk metrics of MESs for different scenarios and wind speeds 

Risk metrics 

v =  31m/s v =  35m/s v = 41m/s 

Scenario 

A 

Scenario 

B 

Scenario 

A 

Scenario 

B 

Scenario 

A 

Scenario 

B 

EELC 0.0960 0.0992 0.2040 0.2017 0.2895 0.2783 

EGLC 0.0998 0.0933 0.2340 0.2342 0.3677 0.3420 

EHLC 0.0061 0.0164 0.0102 0.0588 0.0159 0.0956 

8.6 Conclusions 

The growing frequency and extent of windstorm events entail the need to ana-

lyze the risk of multi-energy systems (MESs). This chapter proposes a compre-

hensive framework to evaluate the impacts of windstorms on the nodal risk of 

MESs. The multi-phase performance response curve is utilized to characterize the 

time-dependent performance levels of MESs at different phases, where the im-

pacts of weather extent on component and system operation are modeled. Moreo-

ver, a service-based optimal energy flow model is proposed to assess the perfor-
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mance losses of MESs under windstorms through coordination among different 

energy subsystems. Furthermore, nodal risk metrics for different energy subsys-

tems are defined to quantitatively evaluate the risk of MESs. 

Case studies demonstrate that the increase in weather extent can dramatically 

decrease the system risk indicators of MESs. Regarding the risk of energy subsys-

tems, the heat system can be more resilient than the electric system and gas system 

since the heat demands are simultaneously supplied by electricity and gas through 

the energy hub (EH). Besides, due to the support of power supply from combined 

heat and power units of EH, the risk of the electric system in MESs can be highly 

improved compared to isolated electric systems. Under the impacts of region-scale 

windstorms, the values of risk indicators of area 3 in MESs are the smallest among 

all areas. Therefore, it is an effective measure to harden electrical components in 

area 3 for improving the risk of MESs. Moreover, the removal of gas boilers and 

heat pumps in EH can significantly reduce the risk of heat subsystems, revealing 

the inverse correlation between system risk and cost. The proposed model and 

method can provide system operators with a useful tool to analyze the risk of 

MESs under windstorms. Furthermore, the previous findings can effectively guide 

system operators to constitute targeted measures to enhance the risk of MESs. 

In this study, it is assumed that the storms have constant wind speeds in one 

region without considering the varying weather conditions over time. When con-

sidering the temporal wind speeds, the failure probability of components can 

change with time, which is not considered in this study. Nevertheless, the multi-

phase simulation framework in this chapter can be applied to the risk of MESs un-

der varying weather conditions, if the time series of wind speeds are determined. 

In specific, the failure probability of electric components at different time steps 

can be calculated according to the time series of wind speeds using the failure 

models in (4)-(6). By sampling component failures using the Monte-Carlo simula-

tion technique, the risk of MESs under windstorms can be evaluated using the 

proposed multi-phase framework. Concerning the determination of the time series 

of weather conditions, several methods can be utilized, including statistical analy-

sis methods [34] and projection models [16]. In future work, the analysis frame-

work in this chapter can be expanded to evaluate the risk of MESs under various 

weather conditions. 
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9  Long-term Reserve Expansion of Integrated 
Electricity and Gas Systems for Risk Mitigation 

9.1 Introduction 

The previous chapters have analyzed the short-term risk evaluation and opera-

tional risk assessment for multi-energy systems. This chapter proposes a long-term 

reserve expansion scheme for the MES’s risk mitigation. As discussed, the ever-

increasing utilization of GPPs strengthens the coupling relationship between natu-

ral gas systems (NGS) and electric power systems (EPS), bringing new reliability 

problems to integrated electricity-gas systems (IEGSs) [1]. In specific, different 

from coal-fired power plants whose fuel supply is traditionally considered suffi-

cient, the power output of GPPs relies on gas supply from NGS. Random failures 

occurring in NGS may cause the interruption of gas supplied to GPPs, leading to 

the shortage of generating capacity and finally jeopardizing power system security 

[2]. Such failure amplification process from NGS to EPS through coupled compo-

nents can be defined as cross-sectorial failure propagation [3]. When considering 

the failure propagation from NGS to EPS, small disturbances may propagate to the 

whole system and further engender widespread damage. The catastrophic outages 

in Texas, America on 15th February 2021 can be served as a demonstration of 

cross-sectorial failure propagation [4].  

In recent years, the failure propagation issues have gained increasing attention in 

both industry and academic sectors. In [5] and [6], an integrated simulation 

framework is proposed to simulate the bi-directional cascading failure propagation 

in IEGSs. Reference [7] evaluates the vulnerability of IEGSs by combining the 

cascading failure simulation and a machine learning method. A graph theory-

based method is proposed in [8] to assess the impacts of failure propagation on 

network robustness. In [9], a non-sequential Monte Carlo simulation framework is 

proposed to analyze the reliability of IEGSs considering failure propagation. The 

previous works mainly focus on failure propagation simulation [5, 6] and reliabil-

ity/ robustness analysis [7-9]. However, the countermeasures to guarantee the reli-

ability level of IEGSs under failure propagation are seldom investigated.  

As an effective measure to improve the reliability of IEGSs, the long-term re-

serve expansion aims to determine the deployment of different energy production 

components, such as power plants, to fulfill the energy consumption of consumers 

[10]. Reasonable reserve planning results can provide system operators with suffi-

cient standby resources to deal with demand growth or component failures. Con-

sidering that, several studies have been carried out on the reserve expansion of 

IEGSs by allocating new components. A bi-level multi-stage programming model 

is proposed in [11] considering the bi-directional energy conversion between the 

power system and NGS. In [12], a two-stage stochastic optimization model is de-

veloped to realize the trade-offs between constructing gas pipelines, GPPs, and 

other units. Reference [13] proposes a dynamic stochastic joint expansion plan-

ning of IEGSs considering long-term uncertainties of gas prices. The authors in 
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[14] propose a bi-level model to allocate the gas storage and uncertain wind farms 

considering the temporal correlation of wind power. A multi-period framework is 

proposed in [15] to determine the optimal generation, transmission and gas net-

work expansions. However, the system reliability issues, especially the impacts of 

component failures on system operation, are seldom considered in the system ex-

pansion of the previous studies.  

Motivated by the catastrophic outages in Texas attributed to insufficient reserve 

capacity, the security and reliability issues are essential in the reserve planning of 

IEGSs for reliable energy delivery. To model the random component failures, the 

N-1 criterion is widely used in combined energy system planning as a determinis-

tic approach [16, 17]. Nevertheless, the N-1 standard can only ensure the reliable 

operation of IEGSs under a single component outage, whereas neglecting the sim-

ultaneous failures of multiple components. Alternatively, the probabilistic reliabil-

ity indices, e.g. loss of load probability (LOLP) and expected energy not supplied 

are considered in [2] and [18]. The existing reliability indices of different energy 

subsystems are individually formulated considering their autogenic uncertainties, 

such as gas/electric load variation and electric component failure [18-20]. Howev-

er, the gas component failures and the corresponding failure propagation, on relia-

bility indices of power systems are seldom considered, which may make the long-

term reserve expansion results unreasonable. To address this, the multifactor-

influenced reliability indices are proposed in this chapter considering the synthetic 

effects of autogenic and external uncertainties, including cross-sectorial failure 

propagation, and uncertainties of components and loads. On this basis, a synthetic 

reserve expansion model is developed to coordinate the planning of energy pro-

duction components in IEGSs, while guaranteeing the reliability of both subsys-

tems. 

Considering the superposed influence of multiple uncertainties, the system con-

tingency states for the calculation of reliability indices can be enormous which re-

quires high computation resources [21]. Under this circumstance, the traditional 

planning model that considers all system states may not be applicable due to high 

computation complexity. In order to address that, clustering methods are required 

to aggregate adjacent system states of IEGSs to decrease the computation burden. 

As a typical clustering method, the fuzzy set theory can effectively characterize 

the performance behavior of system states in one cluster (set) instead of using a 

single crisp number. The degree of different system states that belong to the same 

set is measured by a membership function, based on which the features of the 

clustered set can be described in detail [22]. The fuzzy set theory proved as an ef-

fective measure for the reliability analysis [23] and operation optimization [24] of 

energy systems.  

Due to its effectiveness and advantage in dealing with data clustering, the fuzzy 

set theory is introduced and combined with traditional methods, e.g. Monte-Carlo 

simulation (MCS) technique, to achieve great computational improvement [16]. In 

specific, based on the component failure states sampled by the MCS technique, the 

fuzzy theory is applied to aggregate adjacent states into one cluster. In each cluster, 
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the system failure degree is represented by a fuzzy parameter, which is a set of 

possible values and each value has its own membership. Similarly, the 8760-hour 

load curve can also be combined with fuzzy set theory to represent a set of aggre-

gate load values using fuzzy representation. On this basis, the number of system 

contingency states can be significantly reduced. Accordingly, the reserve expan-

sion model is formulated as a fuzzy optimization problem.  

In this chapter, a multifactor-influenced reliability-constrained reserve expan-

sion is proposed to reduce the adverse effects of failure propagation on IEGSs. 

Compared with previous studies, the innovative contributions are summarized as: 

(1) By analytically expressing the contribution of failure propagation on system 

reliability, the novel multifactor-influenced reliability indices are defined consid-

ering the autogenic and external uncertainties. The reliability-constrained expan-

sion model is then developed to guarantee the long-term adequacy of IEGSs.  

(2) This chapter firstly combines the fuzzy set theory and MCS technique to 

decrease system states for computation efficiency improvement. Based on the de-

fined measurement of system failure degree, the fuzzy method is utilized to aggre-

gate the discrete generation failure states into one cluster.  

(3) This chapter proposes an efficient algorithm to solve the developed fuzzy 

reserve expansion model. Optimism parameters are introduced to deal with fuzzy 

numbers considering the risk propensity of system planners. The decomposition 

technique is applied to decompose the proposed decision problem into a master 

problem and two correlated reliability subproblems, where the multifactor-

influenced reliability indices can be effectively calculated considering failure 

propagation. 

This chapter includes research related to the long-term reserve expansion of 

IEGSs for risk mitigation by [25] . 

9.2 The relationship between long-term reserve planning and fail-

ure propagation 

9.2.1 Impacts of cross-sectorial failure propagation on long-term 

reserve planning of IEGSs 

Cross-sectorial failure propagation can be defined as the complicated sequences 

of dependent events triggered by disruptive events. Due to the coupling relation-

ship between two systems, the random failures occurring in NGS may propagate 

to EPS through coupled components, i.e. GPPs. The detailed cross-sectorial failure 

propagation mainly includes the following steps [26].  

Step 1) Initial disturbance in NGS: The initial component failures triggered by 

various disturbances may make the NGS change its operation state.  

Step 2) Gas load curtailments: Due to the initial disturbance, several measures 

may be adopted for the reliable operation of NGS, such as gas production adjust-

ment or gas load curtailments. Due to the interruptible contracts signed between 

generation units and gas companies, the gas supply of GPPs will be firstly cur-

tailed if the gas production cannot satisfy gas loads [27].  
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Step 3) Power output reduction GPPs: The gas load curtailments may result in 

the interruption of the gas supply of GPPs. Considering that, the GPPs have to re-

duce their output due to insufficient gas supply.   

Step 4) Electric load curtailments: Due to the reduction of power output, all the 

available power plants and loads will be re-dispatched to eliminate the power im-

balance. If the adjusting of generating output cannot realize power balance, the 

electric load shedding will be utilized. 

Based on the failure propagation process, we can conclude that the random 

failures occurring in NGS can simultaneously affect the reliability of NGS and 

EPS, leading to the increasing requirement for power capacity. Accordingly, it is 

essential to develop an integrated framework for the synergetic planning of gas 

and power production capacity. 

Note that failure propagation is a result of the adjustment/dispatch decisions af-

ter the failure occurs, which can be naturally embedded in the optimization model. 

However, in the previous studies about system planning, the components in gas 

systems are assumed completely available and the gas-fired power plants can ob-

tain sufficient fuel supply [2, 18]. Hence, the gas component failures and the cor-

responding failure propagation from gas system to power system are seldom mod-

eled in the previous planning models. 

 
Fig. 9.1. The outline of this chapter to determine long-term reserve expansion 

9.2.2 The outline of this chapter to determine long-term reserve 

The outline to determine the long-term reserve of IEGSs is illustrated in Fig. 9.1. 

Firstly, the MCS technique and fuzzy set theory are combined to aggregate adja-

cent system states into one cluster represented by a fuzzy number. Similarly, the 

fuzzy set theory is combined with the LDC model to achieve load representation 

with fewer load states. According to the fuzzy models of energy loads and compo-

nent failures, multifactor-influenced reliability indices are formulated, where the 

cross-sectorial failure propagation is considered. Moreover, the reliability-

constrained reserve expansion model is developed to determine the construction of 

power units, gas suppliers, and power-to-gas (P2G) units. In specific, the proposed 



193 

 

model is to minimize the total system costs, including investment costs, operation 

costs, and load interruption costs. Finally, an efficient algorithm to solve the pro-

posed fuzzy models by introducing optimism parameters and benders decomposi-

tion. 

9.3 Fuzzy models to characterize load and generation uncertainties 

9.3.1 Fuzzy component operation state curve to characterize gen-

eration uncertainties 

Considering the failures and maintenance of components in IEGSs, the compo-

nent operation states in each year can be numerous. Taking EPS as an example, 

the sequential operation curves of units in one year can be obtained according to 

their failure and repair rates utilizing the MCS technique [28]. However, the dis-

crete generation operation states, i.e. 1 and 0, cannot be directly clustered using 

fuzzy set theory since the quantification of failure degree is missing. Considering 

that, the measurement, i.e. available generating capacity is proposed to quantify 

the failure degree of power systems in different states. By aggregating the sampled 

unit operation states in Fig. 9.2, the 8760-hour generating capacity curve of EPS 

can be determined.  

 0 0 0

1 8760[ , , , , ]t t tGC GC GC=0

t
GC L L   (9.1) 

where 0

tGC 
 represents the system available generating capacity at hour   and 

year t . 

 
Fig. 9.2. Description of fuzzy component state curve model 

 

The corresponding 8760-hour operation state curve of different units 
0

t
O  can be 

expressed as:  

 0 0

1[ , , , , ], where [ , , ]t ktO O= =0 0 0 0 0

t t1 tς t8760 tς ς ςO O O O OL L L   (9.2) 
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Through the clustering technique, the 8760 hourly generating capacity curve 
0

t
GC  can be divided into sN  clusters. The sN  clusters can be expressed as (9.3), 

where each cluster 
ts

GC  represents multiple hourly generating capacities.  

 [ , , , , ]=
st t1 ts tN

GC GC GC GCL L   (9.3) 

In the clustering process, the within-cluster sum of squares (WCSS) is mini-

mized [29]. The WCSS can be expressed as: 

 
0

0

1

arg min
s

t

N

t s

s GC

GC



 
= 

 = − 
t

ts
GC GC

  (9.4) 

where s  is the mean value of hourly generating capacity in cluster s . Then the 

clustered unit operation state curve can be expressed as: 

 [ , , , , ]=
st t1 ts tN

O O O OL L   (9.5) 

As shown in Fig. 9.2, the annual generating capacity curve is divided into sN  

subperiods, where each subperiod can represent a generating capacity cluster. The 

duration of subperiod s  can be represented as:  

 1[ , , , , ]
s

FE FE FE FE

s ND D D=D L L   (9.6) 

For conventional probability theory, the performance rate of cluster s  is usual-

ly represented by a certain value, e.g. the mean value of load levels in this cluster. 

However, a single crisp value may not effectively describe the detailed features of 

the load cluster. Considering that, the fuzzy set theory is then introduced to repre-

sent each generating capacity cluster using a triangular membership function, as il-

lustrated in Fig. 9.2. The fuzzy representation of the performance rate of cluster s  

is ( )0, ,tsts ts ts tsGC GC GC GC GC− + =
:

, where the most possible membership 0

tsGC  cor-

responds to the mean value of generating capacity in cluster s , i.e. s . tsGC−  and 

tsGC+  denote the smallest and the largest values of possible generating capacity in 

cluster s , respectively. Accordingly, the fuzzy operating state of unit k  in cluster 

s  can be expressed as ( )0, ,ktskts kts kts ktsO O O O O− + =
:

, where ktsO− , 0

ktsO  and ktsO+  repre-

sent the unit operating states when generating capacities are tsGC− , 0

tsGC  and tsGC+ , 

respectively. The triangular membership function can be represented as:  

( )
( ) ( )

( ) ( )

0 0

0 0

0,

,

,

0,

ts ts

ts ts ts ts ts ts ts

ts

ts th ts ts ts ts ts

ts ts

GC GC

GC GC GC GC GC GC GC
GC

GC GC GC GC GC GC GC

GC GC

−

− − −

+ +

+

 


− −  
 = 

− −  




 (9.7) 

The values of membership ( )tsGC  are between 0 and 1, which can represent 

the weight of tsGC  in cluster s . By representing the cluster s  as a fuzzy value 
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tsGC
:

, the degree of different generation capacity states 
tsGC  that belong to cluster 

s  can be determined by the membership function, based on which the features of 

generation capacity can be described in detail. Besides, the probability of cluster 

s  can be determined by the duration of this cluster, which can be calculated as 

1
Pr

sNFE FE
ts s ss

GC D D
=

 
= 

 


:

. Note that in accordance with the conventional probability 

theory, the performance characteristics of load cluster s  can also be described us-

ing the probabilities Pr tsGC
 
 
 

:

 and performance rates tsGC
:

 of this cluster. Due to 

the advantage in state aggregation and cluster representation, the fuzzy set theory 

has proven an effective method in the reliability analysis of energy systems [22]. 

Likewise, the fuzzy operation state curves of gas wells in NGS can be deter-

mined by the combination of MCS and fuzzy set theory. In specific, the fuzzy rep-

resentation of production capacity in subperiod s  is ( )0, ,ts ts ts tsPC PC PC PC− +=
:

. 

The corresponding fuzzy operating states of gas well w  in subperiod s  is 

( )0, ,wts wts wts wtsO O O O− +=
:

 with duration time FG

sD .  

9.3.2 Fuzzy load duration curve model to characterize load uncer-

tainties 

Considering the stochastic fluctuation of energy demands, the 8760-hour load 

curve is transformed into the fuzzy load duration curve (FLDC) model in this 

chapter. The procedures to determine the fuzzy models of energy loads are in ac-

cordance with those of component state aggregation. Taking electric load as an 

example, the annual load curve before clustering is represented as:  

 0 0 0

1 8760[ , , , , ]t t tPD PD PD=0

t
PD L L   (9.8) 

where 0

tPD 
 represents the electric load at hour   and year t . 

Similarly, the clustering technique is introduced to divide 8760 hourly loads 
0

t
PD  into hN  clusters, as expressed in (9.9).  

 [ , , , , ]=
ht t1 th tN

PD PD PD PDL L   (9.9) 

The corresponding duration of cluster h  determined by the size of the corre-

sponding cluster, as shown in (9.10).  

 1[ , , , , ]
h

E E E

h ND D D=E
D L L   (9.10) 

By means of fuzzy set theory, the fuzzy representation of cluster h  is 

( )0, ,thth th th thPD PD PD PD PD− + =
:

, where 
0

thPD , thPD−
 and thPD+

 denote the mean, the 

smallest, and the largest values of hourly loads in cluster h , respectively. 

Likewise, the annual gas loads in NGS can be transformed into the FLDC 

model. The fuzzy representation of gas load cluster h  is 
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( )0, ,th th th thGD GD GD GD− +=
:

 with duration time G

hD . Compared to the annual load 

duration curve model which is usually approximated as a limited number of states, 

the FLDC model can make load presentation more accurate [30]. 

9.4 Reserve expansion model considering multifactor-influenced 

reliability constraints  

9.4.1 Objective function 

The proposed long-term reserve expansion model is to minimize the total costs 

of IEGSs on the planning horizon. The objective function (9.11) includes energy 

asset investments IC , the operation costs OC  of IEGSs, and the costs of un-

served energy. Equation (9.12) calculates the investment costs of new power 

plants and Gas suppliers. Equation (9.13) represents the operation costs of non-gas 

thermal units and new power plants in EPS, gas wells, and new Gas suppliers in 

NGS. The costs of unserved energy are determined by multiplying the energy load 

curtailments and load shedding costs. The ( )
1

1 1
t

d
−

+  denotes the present-worth 

value, where d  is the discount rate and t  is the planning year. The system state b  

can be obtained by combining the load uncertainties and component failures. 

 
( )

1
min

1

E G

t t t t

t
t

MIENS C EGNS C
TC IC OC

d
−

 + 
= + +

+
   (9.11) 
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  
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  (9.13) 

where tMIENS  and tEGNS  represent the expected electric and gas load curtail-

ments at year t , respectively. 
E

tC  and G

tC  are the shedding costs for power loads 

and gas loads. 
max

etP  and etC  are the generating capacity of candidate unit e  and the 

investment costs, respectively. max

gtW  and gtC  are the production capacity of candi-

date gas suppliers g  and the investment costs, respectively. max

tW
 and tC  are the 
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capacity of P2G facility   and the investment costs, respectively. tz , etz , and 

gtz  denote the construction state of candidate P2G facility  , power unit e  , and 

gas supplier g , respectively. gtbP  and etbP  denote the output of power unit g  

and candidate unit e  for system state b  at year t . wtbW  and ktbW  denote the gas 

production of gas well w  and candidate gas supplier k  for system state b  at year 

t . gC  and 
eC  represent generation costs of power unit g  and candidate unit e , re-

spectively. 
wC  and 

kC  are gas production costs of gas well w  and candidate gas 

supplier k , respectively. 

Note that the basic planning thing of the proposed model is power unit e , gas 

supplier g  , and P2G facility  , whose construction states are represented as etz , 

gtz , and tz , and sizes are represented as max

etP , max

gtW , and max

tW
. 

9.4.2 Multifactor-influenced reliability constraints considering fail-

ure propagation 

1) Comparison between multifactor-influenced reliability indices and traditional 

indices 

In the previous studies, the reliability indices of different energy subsystems 

are individually formulated considering their autogenic uncertainties, such as load 

variation and component failure [31]. For example, the electric not supplied 

(EENS) is a traditional reliability index that can be calculated by the probability-

weighted sum of electric load curtailments for different contingency states b .  

 ( ) ( )Pr , , 8760e e e e

b b

b

EENS x y LC x y=     (9.14) 

where ( )Pr ,e e

b x y  and ( ),e e

bLC x y  represent the probability and electric load cur-

tailments of state b . ex  and ey  denote the electric load variation factor and elec-

tric component failure factor in power systems.  

In this chapter, besides autogenic uncertainties, the effects of failure propaga-

tion on system reliability indices are quantified. Following the formulation process 

of traditional reliability indices, the multifactor-influenced expected electric not 

supplied (MENS) is proposed considering the synthetic effects of failure propaga-

tion, load uncertainties, and component failures.  

 

( ) ( )

( ) ( )

Pr , | Pr

, 8760

e e g g

b b

b

e e g

b b

MIENS x y z z

LC x y LC z

=  

 + 
 


  (9.15) 

where ( )Pr , |e e g

b x y z  represents the conditional probability of electric load vari-

ation ex  and electric component failures 
ey  for certain conditions that failures 

propagate from the gas system gz . ( )Pr g

b z  is the probability of failure propaga-
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tion from the gas system to the power system. ( )g

bLC z  denotes the electric load 

curtailments caused by the failure propagation factor gz . 

Compared to the traditional reliability index EENS, the proposed reliability in-

dex MIENS can more accurately quantify the reliability levels of IEGSs and fur-

ther guide reasonable planning results. 

2) Reliability index formulation in IEGSs 

Considering the failure propagation process, the reliability indices of NGS and 

power systems are developed in sequence. Since the reliability level of NGS is 

mainly affected by gas load variation and gas well failures, the reliability index is 

formulated according to the formulation process in (9.14). Hence, the expected gas 

not supplied (EGNS) can be calculated based on gas load curtailments in state b . 

 Pr , , 8760th wts th wtst mtb

m b

EGNS GD O GLC GD O
   

=     
   


: : : :

  (9.16) 

where Pr ,th wtsGD O
 
 
 

: :

 represents the probability of gas load curtailment 

,th wtsmtbGLC GD O
 
 
 

: :

 at node m  in state b  and year t , which can be calculated by ag-

gregating the fuzzy load states thGD
:

 and gas well states wtsO
:

. Hence, tEGNS  can 

be represented as: 

 

1 1

, 8760
s h

FG G

s h
th wtst mtbN N

m b FG G

s h

s h

D D
EGNS GLC GD O

D D
= =

 
=    

 


 

: :

  (9.17) 

The reliability of EPS is simultaneously influenced by electric load variation, 

unit outages, and failure propagation from gas systems. According to (9.15), the 

reliability index of power systems at year t  can be represented as:  

 

( )

( )

Pr , | Pr

, 8760

th ktst b mtb b mtb

m b

th ktsb b mtb

MIENS PD O GLC GLC

ELC PD O ELC GLC

 
=   

 

  
+   

  


: :

: :
  (9.18) 

It should be noted that the failure probabilities of uncertainties in power sys-

tems and gas load curtailments are independent. Therefore, the failure probability 

of electric load curtailments in (9.18) can be represented as the product of 

Pr ,th ktsb PD O
 
 
 

: :

 and ( )Prb mtbGLC .  

By aggregating the fuzzy representations of load variation, unit failures, and 

gas load curtailment states, the tMIENS  can be represented as: 
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( )

1 1 1 1

, 8760

s h s h

FG G FE E

s h s h

t N N N N
i b FG G FE E

s h s h

s h s h

th ktsb b mtb

D D D D
MIENS

D D D D

ELC PD O ELC GLC

= = = =

 
=  

 

  
+   

  


   

: :

  (9.19) 

Compared to the general reliability indices in (9.15), it can be found that the 

load and generation uncertainties in (9.19) are represented as fuzzy numbers.  

On this basis, the annual reliability indices are limited as: 

 limit

tEGNS EGNS   (9.20) 

 limit

tMIENS MIENS   (9.21) 

where limitEGNS  and limitMIENS  represent the limits of reliability indices in NGS 

and EPS, respectively. 

9.4.3 State and construction constraints 

If the candidate device is installed in IEGSs, its construction state will be set as 

1 in the following years. Hence, the construction states of candidate power unit k , 

gas supplier g  , and P2G facility   are restricted by:  

 
( )1 ete t

z z
−

   (9.22) 

 
( )1 gtg t

z z
−

   (9.23) 

 
( )1 tt

z z −
   (9.24) 

The total gas and electricity production capacity in the IEGSs must supply the 

forecasted energy loads and reserve requirements, which can be expressed as: 

 
max max max

2tbiet et ik tb t p g

i e i k

P z P PD PR W 
 

 +  + +  
CS EG

:

  (9.25) 

 

max max

max

mgt gt m t t

m g

tbmw tb

w

W z W z

W GD GR

 
 



 
 +  

 

+  +

  



CG PG

EW

:
  (9.26) 

where max

ikP  represents the maximum output of power unit k  at node i . max

mwW  rep-

resents the maximum gas production of gas well w  at node m . tbER  and tbGR  

denote the gas reserve and power reserve requirements of power system and NGS 

for system state b  at year t . 2p g denotes the conversion efficiency of P2G facili-

ties. 

9.4.4 system operation constraints 

1) Natural gas system  

Gas system operation constraints in (9.27)-(9.39) describe the operating condi-
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tions of gas wells, pipelines, and gas suppliers. The gas nodal balance equation is 

given in (9.27). The Nonlinear Weymouth equation (9.28) shows that the pipeline 

flow is a function of the squared gas pressures [32]. Constraints (9.29)-(9.31) re-

strict the gas flow direction through pipelines. Nodal squared pressures and pipe-

line flows are limited in (9.32) and (9.33), respectively. Constraints (9.34) and 

(9.35) describes the operating characteristics of gas compressors. Production lim-

its of candidate gas suppliers and gas wells are given in (9.36) and (9.38), respec-

tively. Constraint (9.39) limits gas load curtailments at each node. 

 

+

mwtb mgtb m tb

w g

mtb mtb ptb ctb

p c

W W W

GD GLC




 

  

 

+ +

= − +

  

 

EW CG PG

GL GC

:
 (9.27) 

 ( ) ( ) 2

ptb ptb mtb ntb ptb pM    + −−  − =   (9.28) 

 ( ) ( )max max1 1ptb p ptb ptb p    + −− −    −    (9.29) 

 ( ) ( )max max1 1ptb p mtb ntb ptb p     + −− −   −  −    (9.30) 

 1ptb ptb + −+ =   (9.31) 

 min max

m mtb m      (9.32) 

 max max

c ctb c  −     (9.33) 

 ctb cmtb cntb  =   (9.34) 

 min max

c ctb c       (9.35) 

 max0 mgtb mg gtW W z     (9.36) 

 max0 m tb m tW W z       (9.37) 

 max0 mwtb mw wtbW W o  %   (9.38) 

 mtb mtbGLC GD   (9.39) 

where mwtbW , mktbW  and 
m tbW 

 represent the production of gas well w , candidate 

gas supplier k  , and P2G facility   at node m , respectively. mtbGD
:

 denotes the 

fuzzy gas load for system state b  at node m  and year t . ptb  denotes gas flow 

through pipeline p  for system state b  at year t . mtb  represents the squared pres-

sure at node m  for system state b  and year t . pM  is the transmission coefficient 

of pipeline p . ptb +
 and ptb −

 are binary variables indicating gas flow direction of 

pipeline p . 
max

p  is the maximum gas flows through pipeline p . ctb  and 
max

c  

represent the gas flow and the transmission capacity of compressor c , respective-

ly. min

m  and max

m  are the minimum and maximum squared gas pressures at node 
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m , respectively. ctb  denotes the squared compressor ratio of compressor c  for 

system state b  at year t . min

c  and max

c  are the minimum and maximum squared 

compressor ratios of compressor c , respectively. 

2) Electric power system 

The model in (9.40)-(9.47) describes the operating features of EPS. Equation 

(9.40) represents nodal power balance. Equation (9.41) calculates network power 

flow using the DC model. Line flow limits and nodal phase angles are limited by 

(9.42) and (9.43), respectively. Constraints (9.44) and (9.45) limit the power out-

put of candidate units and coal-fired power plants, respectively. The power output 

of GPPs is calculated by the corresponding gas supplied to them, as shown in 

(9.46). Constraint (9.47) limits power load curtailments at each node. 

 

( )

2

GG CG

ietb iktb iktb ltb

e k l

itb itb m tb p g

P P P f

PD PLC W  

  

+ + −

= − −

  
CS EG EL

:
  (9.40) 

 
( )ltb itb jtb lf x = −

  (9.41) 

 
max max

l ltb lf f f−  
  (9.42) 

 
max max

i itb i  −  
  (9.43) 

 
max max

ie et ietb ie etP z P P z−    
  (9.44) 

 
max0 CG

iktb ik ktbP P o  %
  (9.45) 

 
( )GG

iktb mtb mtb ktbP GD GLC o= −  %
  (9.46) 

 itb itbPLC PD
  (9.47) 

where CG

iktbP  and GG

iktbP  represent the power outputs of GPPs and coal-fired power 

plants for system state b  at node i . ietbP  represents the output of candidate unit 

e  for system state b  at node i . itbPD
:

 denotes the fuzzy electric load for system 

state b  at node i . ltbf  denotes the electricity flow through power line l  for sys-

tem state b  at year t . itb  and 
lx  represent the angle of node i  for system state 

b  and the reactance of line l , respectively. max

lf  denotes the transmission capaci-

ty of line l . 

9.5 Solution methodology 

9.5.1 The treatment of fuzzy parameters 

As discussed in chapter 10.2, both the energy loads and component states are 

expressed as fuzzy numbers. The reserve planning model is formulated as a 
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mixed-integer non-linear optimization problem with fuzzy parameters (MNOFP). 

Considering that, one effective method is to convert the fuzzy parameters into a 

crisp parameter using an optimism value [33]. In specific, the fuzzy electric loads 

( )0, ,tb tb tb tbPD PD PD PD− +=
:

 can be replaced by (9.48) which allows the MNOFP to 

be solved with a compromise approach. 

 
( )0 1

2 2 2

d tbd tb tb
tb

PDPD PD
PD


+− −

= + +  
 

:

  (9.48) 

where the optimism value 0 1d   can be adjusted based on the risk propensity 

of system planners.  

To deal with the fuzzy unit states, the corresponding fuzzy system generating 

capacity tbGC
:

 is firstly converted into a crisp parameter using optimism value c  

in (9.49). Based on the calculated tbGC
:

, the operating states ktbo%  for different units 

in subperiod b  can be determined.  

 
( ) 01

2 2 2

c tb tb c tb
tb

GC GC GC
GC

 
− + −

= + +  
 

:

  (9.49) 

Similarly, the fuzzy gas loads and gas well state can be replaced by crisp pa-

rameters using optimism values. On this basis, the proposed MNOFP can be con-

verted into a mixed-integer non-linear programming (MINLP) problem. 

It can be should that the robustness of planning results can be guaranteed by 

setting a smaller optimism value. Taking electric load tbPD
:

 as an example, the 

system electric load level can increase with the decrease of optimism values d . 

Under this circumstance, more energy production components need to be con-

structed to satisfy the requirements of energy loads. 

9.5.2 The solution of the reliability-constrained reserve expansion 

model 

This proposed reserve planning model cannot be efficiently solved due to the 

reliability constraints in (14) and (17). Benders decomposition is therefore applied 

to decompose the original optimization problem into a master problem to optimize 

the base-case investment decisions, and two subproblems to check the reliability 

constraints of EPS and NGS [34]. 

In the steady-state analysis of gas systems, the gas flow models can be divided 

into two categories [35]. The first one is the controllable-flow model where the 

pipeline flows are fully controllable and are modeled as control variables limited 

by pipeline limits [2]. The second one is the noncontrollable-flow model, i.e. 

Weymouth function where the pipeline flows are modeled as state variables re-

stricted by nodal pressures [36]. In the gas reliability subproblem, the controllable-

flow model is utilized to guarantee the convergence and optimality of Benders 
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cuts. The simplification of the gas flow model has proved to be acceptable for in-

vestment problems over a long time horizon and has been widely used in system 

planning [2, 37]. The measures in [36] to deal with the nonlinear and nonconvex 

gas flow model in the subproblems will be introduced for future studies about the 

optimal operation of IEGSs.  

1) Master investment problem 

The master investment problem is presented in (9.50), where the dual cuts gen-

erated from the gas system and power system reliability subproblems are iterative-

ly added. The master problem mainly determines the optimal investment and op-

eration decisions in the base case considering load variations. The stochastic 

failures of components are considered in the two subproblems to check the relia-

bility requirements of IEGSs. Hence, the operating states of gas wells wtbo%  and 

generating units ktbo%  are set as 1 in the master problem. Optimal solutions etz$  , 

gtz$ and tz 
$  are sent to the two subproblems. 

 

min

S.t. +

Constraints (22)-(38), (40)-(46)

Dual reliability cuts generated

O generatedptimality cuts 

TC

TC IC OC

  (9.50) 

It should be noted that the master problem is an MINLP problem due to gas 

flow equations (9.28). The auxiliary variables ptb  are firstly defined to replace 

( ) ( )ptb ptb mtb ntb   + −−  − . Based on the second-order cone relaxation technique, 

the gas flow equation (9.28) can then be relaxed as [18]:  

 2

ptb p ptbM     (9.51) 

 
( ) ( )ptb ptb ptb mtb ntb    + −= −  −

  (9.52) 

The non-linear function (9.52) can then be linearized by a standard McCormick 

relaxation [38], which can be represented as:  

 ( )( )min max1ptb ntb mtb ptb ptb m n      + − − + − + −   (9.53) 

 
( )( )max min1ptb mtb ntb ptb ptb m n      + − − + − − −

  (9.54) 

 
( )( )max min1ptb ntb mtb ptb ptb m n      + − − + − + −

  (9.55) 

 
( )( )min max1ptb mtb ntb ptb ptb m n      + − − + − − −

  (9.56) 

Hence, the original MINLP model can be transformed into a mixed-integer 

second-order cone program (MISOCP) problem. 

2) Gas system reliability subproblem 
Once the construction states of gas suppliers and P2G facilities are identified 

by the master problem, the NGS reliability subproblem is to determine whether 
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the planning decisions satisfy the reliability requirements. The problem objective 

(9.57) is to minimize the total gas load curtailments for each system state. The 

proposed reliability subproblem needs to follow the constraints (9.58).  

 min m mtb tb

m t b

GLC D     (9.57) 

 

s.t. ( )

( )

Constraints (9.27), (9.32) (9.39)

gtgt gt

tt t

z z

z z 





=

=

−

$

$   (9.58) 

where m  represents the weights of gas loads at node m  that distinguish the 

shedding sequence of loads supplied to GPPs and remainders, e.g. heaters. Con-

sidering the prior curtailment of gas supplied to GPPs, the corresponding values of 

m  can be slightly smaller than those for remaining loads.  

Based on the gas load curtailments solved by the subproblem, the annual 

tEGNS  can be calculated using (9.17). When the annual tEGNS  reliability con-

straint (9.20) is not satisfied, the dual cut (9.59) will be added to the master in-

vestment problem for the solution in the next iteration. 

 

( )

( ) limit

gtmtb tb gt gt

m b g

tt t

GLC D z z

z z EGNS 










 + −

+ − 

 



$

$

CG

PG

  (9.59) 

where gt  and t  is the dual values of the constraints associated with the con-

struction states of gas suppliers and P2G facilities.  

3) Power system reliability subproblem 
Based on the planning decisions of power units from the master problem, the 

reliability requirements of EPS are evaluated in this subproblem. The problem ob-

jective (9.60) is to minimize the total electric load curtailments subject to the con-

straints (9.61). To simplify the calculation, the power outputs of GPPs can be de-

termined according to the expected gas load curtailments mtEGNS  at the 

corresponding nodes. 

 min itb tb

i t b

PLC D   (9.60) 

 ( )

s.t. ( )

Constraints (9.40) (9.45), (9.47)

etet et

GG

iktb mtb mt ktb

z z

P GD EGNS o





=

= −  

−

$

%   (9.61) 

Likewise, the annual tMIENS  can be calculated using (9.19) to identify wheth-

er the reliability constraint (9.21) can be satisfied. If violated, the corresponding 

dual cut will be generated:  
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 ( ) limit
etitb tb et et

i b e

PLC D z z MIENS


 + −   $

CS

  (9.62) 

When the reliability constraints (9.20) and (9.21) are satisfied, The optimal re-

liability subproblem (9.63) for IEGSs is modeled subjected to (9.64). Then the re-

liability cost obtained in this subproblem will be added to the investment and op-

eration costs to calculate the total planning cost. If it is not equal to the total 

planning costs TC , the optimality cut (9.65) will be added to the master problem. 

 
( ) ( )

1 1
min

1 1

G E

m mtb tb t itb tb t

t t
m t b i t b

GLC D C PLC D C
lc

d d


− −

= +
+ +

   (9.63) 

 

( )

s.t. ( )

( )

( )

Constraints 27 , (32) (47)

gtgt gt

etet et

tt t

z z

z z

z z 







=

=

=

−

$

$

$
  (9.64) 

 ( ) ( )+ et gtet et gt gt

e t g t

TC ic oc lc z z z z 
 

  + + − + −  $ $

CS CG

 (9.65) 

where ic , oc  and lc  denotes the variables of investment costs, operation 

costs, and load curtailments for the certain component construction states deter-

mined in the master problem. Hence, the values of ic , oc  and lc  can change 

for each iteration. 

9.5.3 Solution procedures of the proposed model 

Fig. 9.3 shows the solution procedures for the long-term reserve expansion 

problem. 

Step 1. Determine the fuzzy models of energy loads and component failures us-

ing the fuzzy set theory.  

Step 2. Introduce optimism values to convert fuzzy parameters into a crisp val-

ue using (9.48) and (9.49). Set iteration number 1 = .  

Step 3. Solve the master investment problem (9.50)-(9.56) and send the optimal 

results gtz$ , etz$  and tz$  to steps 4 and 5. The calculated total results of the mas-

ter problem at iteration   is 
( )min,

TC


, which is the lower bound for the optimal 

value of the original problem.  

Step 4. Solve the gas system reliability subproblem (9.57)-(9.58) with respect 

to gtz$  and tz$ . Calculate the annual reliability index and send EGNSmt to step 5. 

If the reliability constraint (9.20) is violated, add the dual cut (9.59) to the master 

problem and go to Step 3. 

Step 5. Solve the power system reliability subproblem (9.60)-(9.61) for certain 

values of etz$  and MIENSt, and calculate the reliability index. If the reliability 
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constraint (9.21) is violated, add the dual cut (9.62) to the master problem and go 

to Step 3.  

Step 6. If all the reliability constraints in both NGS and EPS are satisfied, solve 

the optimal reliability subproblem in (9.63)-(9.65). Calculate the lower bound for 

the optimal value of the original problem by adding up the investment, operation, 

and reliability costs, which can be represented as 
( ) ( ) ( ) ( )max,

+TC IC OC LC
   
= + .  

Step 7. Determine if the convergence criterion of the Benders decomposition is 

satisfied. If the convergence criterion is violated, add the dual cut (9.65) to the 

master problem. Let 1 = +  and go to Step 3. If the convergence criterion is sat-

isfied, Terminate. 

 

( ) ( )

( ) ( )

max, min,

max, min,

2 TC TC

TC TC

 

 


−


+
  (9.66) 

where   is the tolerance of convergence. 
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Fig. 9.3 The flow chart of the solution procedures 

Here, the convergence of the solution method is demonstrated. Fig. 9.4 shows 

the relation between the master problem and two reliability subproblems, whose 

solution can be divided into two phases. In the first phase (①+②), the master in-

vestment problem calculates the construction states of gas suppliers based on the 

feasibility cuts from the gas reliability subproblem. The two problems are calcu-

lated iteratively until the reliability constraint of the gas subsystem is satisfied. Af-

ter the solution process is ended, the construction states of gas suppliers and P2G 

facilities, as well as gas load shedding results can be determined. 

For certain gas load shedding results in the first phase, the generation losses of 

gas-fired power plants (GPPs) can then be determined, which remain unchanged 

in the second phase (①+③). Considering that, the interaction process between the 
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master problem and power reliability subproblem is similar to that in the first 

phase. The construction states of power units can be determined until the reliabil-

ity constraints of the power subsystem can be satisfied. After both the feasibility 

of the two subproblems is satisfied, the optimality cuts will be fed back to the 

master problem for the next iteration. Note that the developed optimality cut com-

bines the gas and power load curtailment costs of two subproblems, which are 

equivalent to two optimality cuts respectively formulated in two phases. There-

fore, the optimization models in the two phases follow the specific structure that is 

particularly amenable to the Benders decomposition. The detailed proof of the 

convergence of the solution method in each phase can be seen in [39]. 

 
Fig. 9.4 The relation between the master problem and two reliability subproblems 

 

9.6 Case study 

The IEGSs composed of the modified IEEE 30-bus power system [40] and 

Belgian 20-node gas system [32] are introduced to show the effectiveness of the 

proposed model. The modified EPS is composed of six power units, where three 

GPPs at electric nodes 5, 8, and 13 obtain fuels from gas nodes 3, 7, and 20. The 

electric load data are derived from [41]. The modified gas system consists of 19 

pipelines, three compressors, and six gas wells. The physical parameters of pipe-

lines, compressors, and wells can be found in [32]. The hourly gas load levels in 

NGS are estimated according to the data in [42]. Both the electric loads and non-

power gas loads have an average load growth rate of 3%. The discount rate d  is set 

at 5% and the planning horizon is set at 10 years. 

Table 9.1 and Table 9.2 respectively show the data of six candidate power units 

and five candidate gas suppliers. The listed data of power plants and gas suppliers 

include location, capacity, investment cost, and operating cost. Note that the in-

vestment of P2G facilities is only considered in Case study D. The failure rates of 

power units and gas wells are both set as 0.001, while their repair rates are 0.02 

and 0.01, respectively [26]. The reserve requirement is 5% of energy loads at each 

state. The shedding costs for electric loads and gas loads are set as 1000$/MWh 

[43] and 0.64$/m3, respectively. The optimism values of system planners are as-

Master investment problem

Determine the optimal solution for

investment states of candidate elements

Gas reliability 

subproblem

Power reliability 

subproblem

①
Component 

construction 

states

② Feasibility cuts 

of gas system

③

Gas load 

shedding

③ Feasibility cuts 

of power system

②&③
Optimality 

cuts

First phase①+ ② Second phase①+ ③



209 

 

sumed as 0.5. The pre-determined tolerance   is set as 0.01. 

Table 9.1 Candidate power units data 

Power 

units 
Bus 

Capacity 

(MW) 

Investment cost 

(103$/MW) 

Operating cost 

($/MWh) 

ES1 30 80 250 50 

ES2 26 60 210 45 

ES3 17 50 190 55 

ES4 15 60 230 45 

ES5 10 50 220 40 

ES6 4 30 180 40 

 

Table 9.2 Candidate gas supplier and P2G data 

Gas sup-

pliers 
Node 

Capacity 

(104m3) 
Investment cost ($/m3) 

Operating cost 

($/m3h) 

GS1 7 4 6000 0.020 

GS2 17 3.5 6300 0.015 

GS3 16 2.8 6200 0.025 

GS4 20 2.8 6200 0.025 

GS5 4 3.2 6300 0.015 

 

9.6.1 Effectiveness analysis of the proposed model compared to 

conventional existing models 

In this case, the effectiveness of the proposed model with multifactor-

influenced reliability indices is demonstrated compared to other conventional ex-

isting models. In the previous studies, the gas components are assumed completely 

available and the failure propagation from gas systems to power systems is not 

considered [18]. The traditional reliability indices, e.g. EENS are usually utilized 

to characterize the reliability levels of power systems [17]. In the proposed model, 

component failures in gas systems and the corresponding failure propagation are 

considered. The MIENS index and ENGS index are utilized to quantify the relia-

bilities of power systems and gas systems, respectively. In this case, the limits of 

EENS and MIENS indices are identical, which are set as 10000 MWh. The limit of 

the EGNS index is set as 1.5×107 m3.  

Table 9.3 shows the comparison of planning results between the proposed 

model and the existing planning models. Firstly, it can be found that more gas 

suppliers and power plants are deployed in the proposed model. Secondly, both 

the installation of power plants and gas suppliers are brought forward in the pro-

posed model. This is mainly because gas system uncertainties and failure propaga-

tion are not considered in the conventional models and deployment of candidate 

elements only needs to meet the forecasted loads. 

Table 9.3 Installation year of candidate elements for different models 
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Candidate 

units 

Proposed 

model 

Existing 

model 

Candidate gas 

suppliers 

Proposed 

model 

Existing 

model 

ES1 - - GS1 1 - 

ES2 - - GS2 - - 

ES3 3 2 GS3 7 - 

ES4 - - GS4 - - 

ES5 5 7 GS5 3 7 

ES6 1 6 - - - 

 

Based on the determined candidate element installation in Table 9.3, the relia-

bilities of IEGSs at different years are evaluated considering gas component fail-

ures and failure propagation. Fig. 9.5 shows the reliability evaluation results of the 

proposed model and the existing planning model. Firstly, it can be found that the 

neglect of gas component failures in the existing model may lead to over-

optimistic planning results, which cannot guarantee the reliable operation of NGS. 

It can be found that the maximum value of ENGS of the existing model is 

4.25×107 m3, which is over 4 times than ENGS requirements. In contrast, the 

ENGS values in the proposed model are all smaller than ENGS requirements. The 

analysis results indicate that the reliability requirements of NGS cannot be 

achieved in the existing model when considering component failures.  

Considering the cross-sectorial failure propagation, unreasonable gas supplier 

plans in the existing model also make the deployment of power plants cannot sat-

isfy reliability requirements. As illustrated in Fig. 9.5, the EENS values calculated 

in the existing model increase rapidly from year 2 to year 10, which are all larger 

than reliability requirements. On the contrary, the maximum value of MIENS in 

the proposed model is only 9290.23 MWh, which is smaller than the reliability re-

quirements. The reliability analysis results further demonstrate that the proposed 

model can plan reasonable reserve to guarantee the reliability levels of IEGSs.  

 
Fig. 9.5 Comparisons of reliability indices in different models considering cross-

sectorial failure propagation 

 

The total planning costs of different models are also compared in Table 9.4. At 
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the end of the planning horizon, the investment costs of the proposed model can 

be 5.76×108 $ (much higher than that in the existing model) since more gas sup-

pliers are deployed. Nevertheless, the operation costs in the proposed model are 

relatively smaller due to the lower operation costs of new power plants and gas 

suppliers. In specific, the operation costs of the proposed model are 1.617×108 $, 

which is 0.90 times those of the existing model. Despite the investment cost sav-

ing in the previous model with fewer gas supplier constructions, the neglect of gas 

contingencies can lead to more energy curtailment costs. The unserved energy 

costs of the previous model are nearly 5 times those of the proposed model. Syn-

thesizing the investment costs, operation costs, and unserved energy costs, the to-

tal planning costs of the proposed model can save 2.23 ×108 $ costs. The analysis 

results demonstrate that the proposed model can realize the coordination between 

economy and reliability. 

Table 9.4 Operation scheduling results of different models  

Cost (×108 $) Existing model Proposed model 

Investment costs 
Gas suppliers 1.504 5.524 

Power plants 0.236 0.231 

Operation costs 1.783 1.617 

Unserved energy costs 6.805 0.734 

Total co-optimization costs of IEGSs 10.33 8.105 

 

In order to demonstrate the effectiveness of the second-order cone relaxation 

technique for convexifying the gas flow model, another widely-used linearization 

technique, i.e. piecewise linearization method is introduced in this chapter as a 

comparative method to solve the proposed model. The total optimal objective cal-

culated by the piecewise linearization method is 8.112×108 $, with only a 0.08% 

difference from the objective value obtained by the second-order cone relaxation 

method. The difference in pipeline flows between these two methods at different 

states of year 10 is calculated, as illustrated in Fig. 9.6, whose largest value is 

smaller than 2%. With regard to computation efficiency, the computation time of 

the MCE method is 1101.89 s, which is 0.48 times that of the piecewise lineariza-

tion technique.  
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Fig. 9.6 Difference of pipeline flows at different states of year 10 between second-

order cone relaxation and piecewise linearization methods 

 

Moreover, the second-order cone relaxation technique has been widely used in 

the expansion and optimization of gas systems [18, 38, 44], whose optimality gap 

and efficiency have also been explained in [38]. By potentially modifying the gas 

components in Belgium gas network topology, different test systems are devel-

oped in [38] to compare the optimal objective value, optimality gap, and the effi-

ciency between different methods. The analysis results in reference [38] show that 

the second-order cone relaxation technique can derive high-quality solutions com-

pared to other methods. Besides, the optimality gaps of the second-order cone re-

laxation technique are provably tight, which can also lead to global optimal solu-

tions in some cases. Furthermore, the computation efficiency of the second-order 

cone relaxation technique is much higher than other methods. 

9.7.2 Sensitivity analysis of reliability requirements on planning re-

sults 

In this case, the impacts of reliability requirements EGNSlimit and MIENSlimit on 

the reserve planning results of IEGSs are analyzed. When EGNSlimit changes from 

0.6×107 m3 to 2.7×107 m3 and MIENSlimit changes from 4000 MWh to 12000 

MWh, the variation of deployed energy reserve and the corresponding planning 

costs are analyzed. 

With the change of reliability requirements in both NGS and EPS, the total gas 

reserve and electric reserve at the end of the planning horizon are given in Fig. 9.7 

and Fig. 9.8, respectively. With regard to NGS, we can find that the deployed gas 

reserve increases with the decrease of EGNSlimit values. As shown in Fig. 9.7, the 

deployed gas reserve decreases from 1.35×107 m3 to 0.95×107 m3 when EGNSlimit 

changes from 0.9×107 m3 to 2.1×107 m3. In contrast, the variation of reliability re-

quirements in the power system has no impact on the gas reserve planning results. 

Hence, the expansion planning of gas reserve mainly depends on EGNS require-

ments due to the unidirectional energy interaction between NGS and EPS through 
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GPPs. 

 
Fig. 9.7 Total deployed gas reserve with varying MIENS and EGNS limits 
 

Regarding EPS, the planning results of the electric reserve are simultaneously 

affected by the change in reliability requirements in NGS and EPS. Firstly, it can 

be noted that the reduction of MIENSlimit can increase the deployment of electric 

reserve in EPS. Moreover, we can find that the increase in reliability requirements 

in NGS can reduce the deployment of power units in EPS. This is mainly because 

the decrease in EGNSlimit can reduce the probability of gas interruption to GPPs in 

contingency states. Due to the adequacy of gas fuels, the GPPs need not reduce 

their power output during contingencies. Considering that, less electric reserve is 

required to guarantee the reliability level of EPS. The simulation results also indi-

cate that we can improve the reliability of EPS by simultaneously optimizing the 

energy resources in both systems.  

 
Fig. 9.8 Total deployed electric reserve with varying MIENS and EGNS limits 

9.7.3 The impacts of optimism values on planning results 

The impacts of optimism values on investment decisions of IEGSs are shown 

in Table 9.5 and Table 9.6. Three scenarios are considered: S1 is the based case 
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where the optimism values are set as 0.5 in accordance with the previous studies. 

The optimism values of S2 and S3 are set as 0.2 and 0.8, respectively. 

Table 9.5 Installation year of candidate units for different optimism values 

Candidate power units S1: 0.5 S2: 0.2 S3: 0.8 

ES1 - - - 

ES2 - - - 

ES3 3 1 4 

ES4 - 6 - 

ES5 5 9 9 

ES6 1 1 1 

 

Table 9.6 Installation year of candidate gas suppliers for different optimism val-

ues 

Candidate gas suppliers S1: 0.5 S2: 0.2 S3: 0.8 

GS1 1 1 - 

GS2 - 1 3 

GS3 7 6 6 

GS4 - 9 - 

GS5 3 0 - 

 

In conclusion, the increase in optimism values can decrease the allocation of 

energy production components by system planners. For example, the system plan-

ners tend to allocate the candidate components more conservatively if they are not 

very optimistic (with small optimism values in S2). The installation of power units 

and gas suppliers will be brought forward and more energy reserves will be allo-

cated. Under this circumstance, more costs will be required to ensure the higher 

reliability of IEGSs. In contrast, the system planners will be more likely to post-

pone and reduce the allocation of production components if they are more optimis-

tic (with small optimism values in S3). Accordingly, the costs of reserve expan-

sion will be smaller and the system reliability level is relatively lower. The 

simulation results further demonstrate that the intermediate optimism values can 

realize the coordination between costs and reliability. 

9.7.4 Coordination analysis between P2G facilities and gas suppli-

ers 

In this case, the allocation of P2G facilities and gas suppliers are coordinated 

for the reserve expansion of IEGSs. Four candidate P2G facilities are planned to-

gether with gas suppliers, whose data are shown in Table 9.7 [45]. The conversion 

coefficient of P2G facilities is set as 50 m3/MW [46]. Considering different costs 

of power generation in EPS, two scenarios are introduced. Scenario I is the base 

scenario where the operating and investment costs of power units are identical to 

those in Case A. In scenario II, the corresponding costs are set as 80% of those in 

scenario I. 
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Table 9.7 Data of candidate P2G facilities 

Gas suppliers 
Gas 

Node 
Electric node 

Capacity 

(104m3) 
Investment cost ($/m3) 

P2G-1 4 4 0.1 10000 

P2G-2 4 9 0.08 9500 

P2G-3 4 14 0.08 10500 

P2G-4 4 20 0.1 10000 

Table 9.8 shows the planning results of candidate components for different 

scenarios. Firstly, it can be found that the installation of gas suppliers is appreciat-

ed in scenario I. With the decrease in power generation costs in scenario II, P2G 

facilities will be installed to satisfy the gas demand in IEGSs. Besides, more pow-

er units are planned in scenario II due to the installation of P2G facilities. The 

study results show that the P2G facilities tend to be installed for scenarios where 

the average power generation costs are relatively lower, e.g. power systems with a 

high proportion of renewable energy. On the contrary, the investment in P2G fa-

cilities will increase the installation of high-cost power units, which can be more 

expensive than the investment of gas suppliers.  

Table 9.8 Installation year of candidate elements for different scenarios 

Candidate 

units 
Scenario I 

Scenar-

io II 

Candidate gas 

elements 
Scenario I 

Scenario 

II 

ES1 - 10 GS1 1 7 

ES2 - - GS2 - 1 

ES3 3 2 GS3 7 3 

ES4 - 1 GS4 - - 

ES5 5 6 GS5 3 - 

ES6 1 3 P2G-1 - 2 

- - - P2G-2 - 2 

- - - P2G-3 - - 

- - - P2G-4 - - 

 

9.7 Conclusion 

Considering the impacts of cross-sectorial failure propagation, a multifactor-

influenced reliability-constrained reserve expansion is proposed to determine the 

allocation of energy production components. In the proposed model, the novel 

multifactor-influenced reliability indices are defined considering the synthetic ef-

fects of multiple uncertainties, including failure propagation, load uncertainties, 

and component failures. The fuzzy set theory is combined with conventional 

methods to reduce the number of system contingency states for computation effi-

ciency improvement. Case studies demonstrate that the proposed model can real-

ize the coordination between economy and reliability compared to the previous 

studies. Moreover, the simulation results indicate that we can improve the reliabil-

ity of EPS by simultaneously optimizing the energy resources in both systems. 
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Furthermore, the robustness of the proposed model can be guaranteed by setting a 

smaller optimism value. Hence, the proposed model in this chapter can provide 

useful references for system planners to constitute reasonable reserve expansion 

plans to guarantee the reliability levels of IEGSs. 
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10 Outlook of Incorporating Integrated Demand 
Response in Risk Control of Multi-energy sys-
tems 

10.1 Introduction 

Multi-energy vectors are closely coordinated in the entire process from energy 

production to consumption. On the demand side, distributed multi-energy systems 

(DMS) can integrate the local multi-energy generation, conversion, and utilization 

[3]. Generally, the DMS consists of two sections, including district energy supply 

systems (DESS) and terminal multi-energy loads. The DESS refers to the aggrega-

tion of local energy producers and converters, e.g. combined heat and power 

(CHP) units which can provide multi-energy supply for terminal loads. In terms of 

terminal loads, the industrial loads require multiple varieties of energy and occupy 

a considerable share of final energy consumption. Compared with residential and 

commercial consumers, the energy consumption of industrial facilities accounts 

for nearly 54% of the global end-use energy consumption in 2020 [4]. Especially 

in areas with extremely dense industries, local DESSs are always constructed to 

satisfy the enormous multi-energy requirements of terminal industrial loads (IL). 

Therefore, the typical DMS composed of the DESS and the IL, named as a dis-

tributed multi-energy system with industrial loads (DMSI) is becoming a domi-

nant form for energy system terminals. 

With the widespread implementation of renewable energy, the conventional 

flexible resources provided by the energy supply side may no longer be able to 

envelop renewable energy fluctuation in MESs. Meanwhile, the demand side sys-

tem can unlock substantial flexibility for system operation with the development 

of advanced technologies such as demand response (DR) and distributed energy 

conversion [5]. As for the DMSI, both the energy conversion in the DESS and the 

adjustable production plan in the IL can provide flexibility. On the one hand, the 

energy converters and storages in the DESS can not only shift energy inputs 

among different times but realize energy conversion among various energy carri-

ers. On the other hand, the factories have intermediate material storage and redun-

dant equipment, and the industrial process does not need to work at full load all 

the time. Considering that, they can adjust their production plans and shift energy 

demands. Therefore, a DMSI that combines the above two adjustable sections has 

tremendous potential for increasing the flexibility of MESs. 

The awareness and excavation of the flexibility in DMSIs can bring enormous 

benefits for both the utility system and the end-users. For the utility system, sys-

tem operators can better allocate flexible resources between the supply and de-

mand sides [6] to reduce price spikes in the energy market [7]. Besides, the pres-

sure of high investment in traditional flexible fossil-fired units can be significantly 

alleviated [8]. For the demand system, local aggregators can optimize the opera-

tion of DMSIs in the energy market environment and further adjust their participa-
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tion in various energy markets, thereby reducing the energy purchase cost [9]. The 

previous results have shown that the flexibility of the demand-side resources can 

contribute to the economic and environmental benefits for the whole society [10]. 

Therefore, it is urgent to explore the flexibility of the DMSI to provide flexible re-

sources for the optimal operation of MESs. 

There have been several researches to explore the integrated flexibility of 

MESs. Reference [11] models and evaluates the flexible demand in heat and elec-

tricity integrated systems. Reference [12] proposes a scheme to evaluate the flexi-

ble natural gas load in natural gas systems. Reference [13] characterizes the al-

lowable range of active and reactive power outputs of a virtual power plant to 

corporate the operation of the virtual power plant in utility system operation and 

market clearing. These references mainly evaluate the flexibility of the DMS for a 

single energy sector such as electric flexibility. Due to the multi-energy integra-

tion in the MES, the flexibility of different energy vectors can be interrelated and 

the evaluation method for a single energy sector may not be applicable. A flexible 

region could be adopted to describe the flexibility of the demand side for different 

energy sectors. References [14,15] introduce a feasible region to evaluate the in-

tegrated flexibility of the DESS. In general, these studies construct different ways 

to explore the flexible resources mainly from the DESS and make great contribu-

tions to the improvement of the integrated flexibility of MESs. Nevertheless, the 

integrated flexibility of the terminal loads should be further explored and mathe-

matically described, especially that of the IL. As a large share of the terminal load, 

the absence of the IL cannot comprehensively excavate the flexibility of the 

DMSI, resulting in a waste of flexible resources. In this context, this study propos-

es a method to construct a feasible region to evaluate the integrated flexibility of 

the DMSI which consists of the DESS and the IL. 

On the demand side, there are many studies dedicated to exploring the flexibil-

ity of the terminal load. References [16–18] excavate, model, and quantify the 

flexibility of smart appliances such as washing machines, dishwashers, and tumble 

dryers. Reference [19] evaluates the flexibility provided by the aggregated air 

conditions for power system operation. Reference [20] utilizes thermal energy 

storage in the form of hot water storage and storage in building material to opti-

mize the operation of the residential electro-thermal equipment for the provision 

of electric flexibility. These references mainly focus on the flexibility of the resi-

dential loads. Compared with the residential loads, the IL has multiple manufac-

turing processes and the flexibility of these manufacturing processes is coupled. In 

other words, if a process keeps reducing production for decreasing energy con-

sumption, its subsequent processes cannot maintain production since the raw ma-

terials for the subsequent processes could run out [21]. Besides, since the IL has a 

variety of energy demands, the flexibility of different energy vectors may be cou-

pled and simultaneous. Considering that, this study mainly focuses on the inte-

grated flexibility of the industrial loads. 

In terms of the industrial loads, there are also many researches studying the 

flexibility of the industrial processes. Reference [22] summarizes the challenges 
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and opportunities of building a flexible industry that could produce different prod-

ucts according to customers’ requirements. References [23,24] propose the flexi-

ble production planning to arrange and execute different production orders within 

limited time and limited machinery resources. In the area of industry research, the 

flexibility is mainly concerned with the adjustment of products or materials. Be-

sides the material adjustment, the flexibility of the terminal load in this chapter fo-

cuses more on the adjustment of multi-energy consumption provided by the ener-

gy converters or the adjustable manufacturing processes. In this context, the 

flexibility definitions and modeling methods of the aforementioned references 

may not be applicable to describe the integrated flexibility of the IL in this chap-

ter. 

On the other hand, several studies have been conducted to manage the optimal 

operation of the IL from the view of energy consumption. Reference [25] identi-

fies the flexibility options in the manufacturing processes to accommodate renew-

able energy and achieve the net-zero target for factories. Reference [26] sizes en-

ergy storage systems and production buffer stocks as the flexibility options to 

maximize the matching between renewable energy generation and flexible de-

mand in factories for the net-zero target. Reference [27] divides the processing 

tasks in industrial facilities into non-schedulable tasks and schedulable tasks to fa-

cilitate their participation in the electric DR. Reference [28] utilizes a multi-state 

model to describe the operation of each workstation and constructs possible penal-

ties in case the production target is not met. Reference [29] proposes a DR scheme 

for steel powder manufacturing based on the real-time electric price. Reference 

[30] models the refinery process and proposes an electric DR scheme to shift the 

demand from peak to non-peak periods. Reference [31] divides the tasks into non-

schedulable tasks, schedulable tasks, and storage tasks and proposes a coupling 

model for the production process and the DESS. These researches mainly focus on 

the optimal adjustment of the IL considering energy prices and economic incen-

tives. Besides, most of them model the energy consumption and the production of 

the IL by several operating points, which limits the flexibility in practice. There-

fore, the integrated flexibility that the DMS can provide for multiple energy sec-

tors is not elaborately characterized. 

In order to facilitate the excavation and utilization of more flexible resources 

by system operators, it is essential to develop an effective methodology to evalu-

ate the flexibility of the DMSI considering multi-energy conversion and adjustable 

production plans. Due to the interaction between the DESS and the IL, the flexi-

bility evaluation of the DMSI can be more complicated. At first, enforced by the 

physical limits of energy converters in the DESS, the energy conversions between 

electricity, gas, and heat are closely correlated and interdependent. Utilizing or re-

stricting the flexibility of one type of energy could inevitably affect that of the 

others. Moreover, the reduction of the IL may affect the production process due to 

the positive correlation between its energy consumption and production. Consider-

ing the huge default losses and credit losses caused by unfulfilled production tar-

gets, the DMSI can only adjust the IL’s production plan to provide flexibility un-
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der the premise of ensuring the production target. Furthermore, the operation of 

various energy converters in the DESS can be represented by their input and out-

put energy flows, while the processing of the IL should be modeled by the input 

energy flows, input material flows, and output material flows of different manu-

facturing processes. Considering that, a unified form should be proposed to model 

the energy converters and the adjustable manufacturing processes together, which 

could facilitate the complex coupling of energy flows and material flows in the 

DMSI. Furthermore, the energy-material integrated model should be able to gen-

erate various constraints and coupling matrices for different energy converters and 

manufacturing processes in a unified and compact form. In this context, the ener-

gy-material relationship of different manufacturing processes and the multi-energy 

relationship of different converters can be modeled with similar steps and into a 

unified form. On this basis, the integrated flexible region can be further excavated 

considering both the energy conversion constraints and the production limits. 

In order to address the aforementioned research gaps, this chapter aims to ex-

cavate and characterize the integrated flexibility of the DMSI. The main contribu-

tions of this chapter can be summarized as follows: 

(1) This chapter innovatively proposes a method to explore the integrated flexi-

bility of the DMSI considering the joint adjustment between the DESS and the IL. 

Both the physical limits of multi-energy converters in the DESS and the produc-

tion targets of the production process in the IL are considered in the flexibility ex-

cavation of the DMSI. 

(2) An energy-material integrated model based on the energy hub (EH) abstrac-

tion is proposed to describe the operating characteristics of the DESS and the IL in 

a unified manner. First, the IL is divided into four subtasks considering the charac-

teristics of the production process and energy consumption. In accordance with the 

energy flow modeling between different components in the DESS, the material 

flows between different subtasks of the IL are then modeled. By combining the IL 

and the DESS models, an energy-material integrated model of the DMSI can be 

obtained to describe the interaction between energy and material flows. With the 

proposed method, the modeling of the energy converters and industrial subtasks is 

in a unified form and compactly automated, which is applicable to a wide variety 

of DMSIs. 

(3) The integrated flexibility is mathematically characterized by an integrated 

flexible region (IFR) based on the polytopic projection. In this context, a calcula-

tion method based on vertex enumeration is proposed to find the feasible region of 

the DMSI. By projecting the feasible region into the space of input energy vectors, 

the IFR of the DMSI is explored, in which the multi-energy inputs of the DMSI 

can be simultaneously adjusted. 

This chapter includes research related to the integrated demand response pro-

vided by industrial loads by [32]. 
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10.2 Flexibility illustration of integrated demand response provided 

by industrial loads 

10.2.1 The structure of distributed multi-energy systems with in-

dustrial loads 

As illustrated in Fig. 10.1, the DMSI usually contains the DESS and the IL that 

are located on the demand side of the entire energy supply chain. The DESS ob-

tains the energy directly from the utility side and then adjusts the multi-energy 

proportion with its energy conversion devices to supply the IL. The IL is the ter-

minal load served by its coupled DESS. As mentioned before, the IL has a variety 

of energy requirements, including electricity, natural gas, thermal energy, etc. 

Natural gas is an important energy resource in the industry. It can be used as raw 

material for producing chemical products and fuel for cutting and welding [33]. 

Thermal energy also has a wide variety of applications in industry, including 

bleaching in textile industries, drying in painting processes, and much more [34]. 

 

Fig. 10.1. The framework of the district energy supply system and industrial loads 

 

1) District energy supply system 

The DESS consists of renewable energy sources, energy converters, and energy 

storages. As shown in Fig. 10.1, the DESS has multi-energy inputs from the power 

grid, the natural gas network, and the steam network on the utility side. Renewable 

energy sources such as solar photovoltaic and wind power could also provide 

power for the local electric system [35]. The energy converters are devices that re-

alize energy conversion among different energy carriers. For example, the CHP 

consumes natural gas to generate electricity and heat. The electric heating equip-

ment and the gas boiler generate heat through the consumption of electricity and 

natural gas, respectively. The storage equipment for different energy sources can 

store and release energy. 

By means of energy conversion devices and energy storage devices, the multi-

energy inputs of the DESS can be alternative and flexible. For instance, the DESS 

can reduce its electricity input without limiting the terminal electricity load by 

generating more electricity from its CHP. Moreover, when the pressure in gas 

pipelines drops, the DESS can cut off the CHP and acquire more energy from the 

power grid. In conclusion, the DESS can provide flexibility for the operation of 

the MES. 
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2) Industrial loads 

Generally, the IL consists of two different load categories during the industrial 

process, including fixed loads and schedulable loads from production equipment. 

Since fixed loads are not adjustable, such as lighting and security loads, this chap-

ter mainly focuses on the adjustable equipment considering the production pro-

cess. In specific, the processing of materials by a device is called a step. In the en-

tire industrial process, many steps are forced by strict sequence restrictions and 

time restrictions. Certain steps must be carried out in order, and the output materi-

al of the previous step has to enter the next step immediately. These specific steps 

with strict time and sequence constraints can be integrated into aggregated sub-

tasks. As long as a subtask has its own raw material, the subtask can carry out its 

production process independently, and the intermediate material produced by the 

subtask can be stored. Fig. 10.2(a) illustrates a typical subtask in industry, namely 

the sheet metal fabrication. This subtask consists of steps such as shearing, punch-

ing, welding, and surface treatment. Since the devices in each step of the assembly 

line are different, the production adjustment of this subtask should consider the 

coordination and interdependence of these steps. 

Therefore, it is obvious that adjusting the operation of a device in the IL inde-

pendently is inappropriate. Assembly lines at the subtask level rather than devices 

at the device level should be modeled and scheduled to study the flexibility of the 

IL. In other words, in the example of Fig 10.2(a), what needs to be concerned is 

the production and energy consumption of the sheet metal fabrication rather than 

those of a step. 

 

Fig. 10.2. The framework of subtasks in industry: (a) the difference between steps 

and subtasks; (b) the difference between different types of subtasks 

 

With adjustable subtasks and redundant production capacity, the IL can re-

schedule its production plan to transfer part production from the peak-load period 

to the valley-load period. Consequently, the multi-energy demands can be regulat-

ed in a certain range according to the production plan. For instance, the IL in Fig. 

10.1 has fixed loads, three productive subtasks, an ancillary subtask, and material 
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storages. Subtask 1 consumes electricity, natural gas, and ancillary materials to 

produce its intermediate products. The DMSI can reduce the production of Sub-

task 1 to limit electricity and gas consumption. Meanwhile, Subtask 2 can main-

tain production without interference as long as there is sufficient inventory for in-

termediate products of Subtask 1. 

In order to explore the adjustability of subtasks comprehensively and precisely, 

the subtasks are further divided into four categories according to their load charac-

teristics to better describe the relationship between production and energy con-

sumption as shown in Fig. 10.2(b). 

(1) Discrete subtasks 

The energy consumption and production of discrete subtasks only switch be-

tween a few fixed operating points. The assembly lines of discrete subtasks have 

the characteristics of high power, small quantity, and non-adjustment. The typical 

case is the coiling process and the traditional final assembly line. When the pro-

duction needs adjusting, such subtasks can only shut down or start part of their as-

sembly lines, resulting in that they can only be switched between a few operating 

points. 

(2) Continuous subtasks 

The energy consumption and production of continuous subtasks can be adjust-

ed approximately continuously. The assembly lines of continuous subtasks have 

the characteristics of small power, large quantity, and non-adjustment. The typical 

case is the weaving process and the injection modeling process. This type of sub-

task also adjusts the production by shutting down or starting their assembly lines. 

However, due to the small power of a single unit and the large overall quantity, 

the relationship between energy consumption and production can be considered 

continuous. For countable materials, there could be a small error in using continu-

ous numbers to describe countable materials. However, for continuous subtasks 

with large quantities of countable materials, the small error is acceptable. 

(3) Flexible subtasks 

The energy consumption and production of assembly lines in flexible subtasks 

can be continuously adjusted. The typical case is the surface mounted technology 

(SMT) process. Therefore, the relationship between energy consumption and the 

production of flexible subtasks is continuous. 

(4) Ancillary services 

Ancillary service is a special subtask whose function is to provide ancillary ma-

terials for other subtasks. For instance, the ancillary service of the compressed air 

can provide compressed air to the final assembly line and the injection modeling 

process. Therefore, the operation and energy consumption of the ancillary service 

depend on those of its integrated subtasks. 

In Fig. 10.1 Subtask 4 is an ancillary subtask and Subtasks 1-3 are productive 

subtasks which could be discrete subtasks, continuous subtasks, or flexible sub-

tasks. To avoid confusion, it should be pointed out that not every industrial plant 

has exactly these four subtasks, i.e. a discrete subtask, a continuous subtask, a 

flexible subtask, and an ancillary subtask. The composition and connection of sub-
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tasks in different industrial plants are not the same. The four categories are pro-

posed to classify the existing subtasks, facilitating the modeling and the IFR exca-

vation of the IL. 

10.2.2 The basic concept of integrated flexibility 

Generally, the integrated flexibility can be defined as the multi-energy adjust-

ment ability of the distributed energy supply system and its terminal multi-energy 

loads to adjust their multi-energy demands without violating the internal security 

constraints and production targets. The alterable combination of multiple energy 

demands of the DMSI constitutes an integrated flexible region (IFR) as shown in 

Fig. 10.3. Taking the DMSI in Fig. 10.1 as an example, it contains three kinds of 

energy inputs, i.e. electricity, heat, and natural gas. The input energy demand is 

the red point in the three-dimensional space as shown in Fig. 10.3(a). When con-

sidering the flexibility provided by the IL, the input energy demand can move 

within a certain range, which is marked as the blue sphere. If the DESS and the IL 

are simultaneously adjusted, the IFR is further expanded to the green sphere. Re-

garding the flexibility of single energy at different times, e.g. electricity, its IFR 

can transform from the red line to the blue area considering the adjustment of the 

IL as shown in Fig. 10.3(b). After considering the flexibility of the DESS, its IFR 

can further expand to green areas. 

 

Fig. 10.3. The integrated flexibility of the DESS and IL: (a) integrated flexibility 

at a certain time; (b) electricity flexibility over a period of time 

 

In general, in the interaction between the DMSI and the utility system, the 

DMSI only provides the utility operators with the IFR. The utility operators do not 

need to attain the internal information of the IL but receive the IFR from the 

DMSI to dispatch the flexible resources on the demand side. With the application 

of the IFR, the utility system operators can easily confirm the adjustable capacity 

at the demand side without acquiring privacy information from the local systems. 

For the demand-side systems, the IFR can help them interact with the operation of 

the utility system and participate in the energy market for more benefits, which 

further promotes the development of distributed renewable energy. 
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10.3 Operation modeling of industrial loads considering energy 

conversion and production tasks 

In this section, the modeling of the DESS based on the EH is first presented. A 

new element, i.e. the bus, is proposed to simplify the conventional EH model. 

Then, operating constraints and production target constraints are constructed for 

the modeling of the IL and an energy-material integrated model is proposed to 

characterize the operation and connection of the DESS and the IL. 

10.3.1 Modeling of the DESS 

According to reference [36], the operating characteristic of the DESS can be 

modeled based on the standardized matrix modeling method. The introduced 

model develops the characteristics of equipment in DESS based on the graph theo-

ry as shown in Fig. 10.4. There are three key elements in the DESS topology con-

structed by the method, i.e., node, port, and branch. A node represents an energy 

converter. A port is an abstract place for the energy input and energy output of a 

node. Each node has a fixed number of input ports and output ports. When a node 

outputs the same kind of energy to other nodes, these energy flows are output 

from one port. Similarly, when the same kind of energy inputs to a node, these en-

ergy flows are input to one port of the node. A branch represents an energy flow 

from or to a node. 

 

Fig. 10.4. The framework of standardized EH models for the DESS 

 

However, when the system structure is complex, the standardized matrix model 

introduces a lot of branches, making the model redundant. Since some nodes have 

no direct physical connection with other nodes, the non-existent branches can 

make the introduced matrix contain many unnecessary elements. In this context, a 

new element, i.e. a bus, is proposed. A bus is the abstraction of a distributed ener-

gy network. Taking the system in Fig. 10.5 as an example, the system structure 

changes from Fig. 10.5(a) to Fig. 10.5(b) after introducing the bus. Buses can be 

regarded as special nodes, however, they have the following differences: 1) Nodes 

convert different types of energy, so the input and output energy types are usually 

different; while buses integrate the same type of energy, so the input and output 

energy types are the same. 2) Nodes may have multiple input or output ports for 
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their input or output may have multiple types of energy, while buses only have 

one input port and one output port. 3) The physical carrier of a node is an energy 

converter, while that of a bus is a distributed energy network. 

 
Fig. 10.5. The structure of a system modeled by (a) the conventional standardized 

matrix model and (b) the improved model 

 

With the introduction of the bus, the number of ports of the original nodes in 

the system does not change, whereas the number of branches in the system can be 

reduced. For instance, the number of branches is reduced from 8 in Fig. 10.5(a) to 

6 in Fig. 10.5(b). When a system has a large variety of equipment and complex 

energy flows, the improved method can make better use of its advantages to re-

duce redundant branches. 

 
Fig. 10.6. The structure of a DESS 

 

Based on the concept of the EH, energy conversion equations, operating con-

straints, energy storage constraints, and energy balance equations are sequentially 

formulated to model the DESS. Taking the DESS in Fig. 10.6 as an example, it 

has three nodes, one bus, and nine branches. The nodes consist of a combined heat 

and power (CHP) unit, a gas boiler (GB), and an electricity storage (ES). The set 

of branches (energy flows) can be expressed as: 

  , , , , , , , ,
T

DESS g g g o c d b b PILG E H E ES ES G H E=F  (10.1) 

where gG  and bG  are natural gas consumption flows of the CHP and the GB, re-

spectively. gH  and bH  represent the heating generation flows of the CHP and the 

GB, respectively. gE  is the electricity generation flows of the CHP. cES  and 

dES  represent the charging and discharging energy flows of the ES. oE  refers to 

the input electricity flow from the power grid. PILE  represents the output electrici-

ty flow to the terminal IL. 

(1) Energy conversion equations 

(a) (b)

CHP Subtask 1

Subtask 2

ES CHP Subtask 1

Subtask 2

ES

Bus

CHP

GB

ES

oE

gG

bG

gH

gE PILE

bH

cES

dES



230  

 

 

Energy conversion equations define the relationship between the input and out-

put of energy flows in each energy conversion node. They represent that the sum 

of the energy output is equal to the sum of the energy input multiplied by the con-

version efficiency. The specific steps to formulate energy conversion equations 

are shown as follows: 

First, a port-branch incidence matrix is formulated to define the connections 

between the ports of a node and branches. Taking the CHP as an example, the 

connections between the ports and the branches can be written as: 

 3 6

1 0 0

0 1 0

0 0 1

CHP 

 
 

= −
 
 − 

J 0  (10.2) 

where the element ,p bJ  of CHPJ  equals 1 if the thp  port of the CHP is the sink of 

branch b , equals -1 if the thp  port is the source of branch b , and equals 0 other-

wise. 

Second, a converter characteristic matrix is formulated to describe the energy 

conversion efficiency. The energy conversion of the CHP can be expressed as: 

 
( )

1 0

1 0 1

e
G gas

CHP h e
G G gas

 

  

 
=  

−  

K  (10.3) 

where the rows reflect the numbers of energy conversion processes and the col-

umns represent the numbers of ports. For instance, the CHP has two energy con-

version processes, i.e. gas to electricity and gas to heat, and three ports. Therefore, 

the CHPK  has two rows and three columns. The element ,pr pK  equals the energy ef-

ficiency if the thp  port is the input of process pr , equals 1 if the thp  port is 

the output of process pr , and equals 0 otherwise. e
G  and h

G  represent the elec-

tric generation ratio and heating generation ratio. gas  is the calorific value of 

natural gas. 

Third, the nodal energy conversion matrix of the CHP node can be expressed 

as: 

 CHP CHP CHP=C K J  (10.4) 

To sum up, the energy conversion equation of the CHP node can be expressed 

as: 

 CHP DESS =C F 0  (10.5) 

(2) Operating constraints 

In the operation, the energy flow is constrained by the capability of the energy 

converters:  

 ,min ,maxDESS DESS DESS F F F  (10.6) 
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where ,minDESSF  and ,maxDESSF  represent the minimum and maximum limits of en-

ergy flows enforced by the converter capability. 

(3) Energy storage constraints 

Different from ordinary energy conversion nodes, the input energy and output 

energy of an energy storage node are not the same in quantity. In order to describe 

the increment of the energy, a virtual port, and a virtual branch are introduced to 

construct an augmented port-branch incidence matrix. Taking the electric storage 

in Fig. 10.6 as an example, the set of branches with the virtual branch is written 

as: 

 ,
T

T
DESS ES DESSS  =  F F  (10.7) 

If the virtual port, the input port, and the output port are respectively numbered 

as port 1, port 2, and port 3, the augmented port-branch incidence matrix of the 

electric storage can be expressed as: 

 3 4

1 0 0 0 0 0 virtual port

0 0 0 0 1 0 input port

0 0 0 0 0 1 output port

ES

ES

S





 
− → 

 
= → 
 − →
  F

J 0  (10.8) 

where the element ESJ  equals -1 in the virtual port row and the virtual branch 

column, and 0 otherwise. 

The converter characteristic matrix of the energy storage node has only one 

row, since the energy storage charges and discharges the same variety of energy, 

which is equivalent to an energy conversion process. Considering the virtual 

branch, the converter characteristic matrix is augmented to: 

 
1

1ES c

d




 
=  
 

K  (10.9) 

where the element ESK  in the virtual port column equals 1. c  and d  refer to 

the charging and discharging ratio, respectively. 

With the port-branch incidence matrix and the converter characteristic matrix, 

the nodal energy conversion matrix and the energy conversion equation of the 

electric storage node are presented in (10.10) and (10.11) , respectively. 

 ES ES ES=C K J  (10.10) 

 ES DESS =C F 0
 (10.11) 

Furthermore, the charging constraint, the discharging constraint, and capacity 

constraints of the electric storage node are presented: 

 
,min ,max

,min , 1 ,max

ES ES ES

ES ES ES t ES

S S S

S S S S−

 −    


  + 

 (10.12) 
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where ,maxESS  and ,minESS  refer to the maximum charging and discharging rate, 

respectively. ,maxESS  and ,minESS  are the maximum and minimum storage, respec-

tively. , 1ES tS −  represents the state of charge (SOC) of the electric storage. 

(4) Energy balance equations 

For the proposed element bus, the energy balance equations can be formulated 

using the same method for energy conversion equations. Taking the electric bus in 

Fig. 10.6 as an example, the port-branch incidence matrix can be written as: 

 
0 1 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 1
EB

 
=  

− − 
J  (10.13) 

The first row represents the connection between the input port and the branch-

es. The second row represents the connection between the output port and the 

branches. The converter characteristic matrix of the bus has one row and two col-

umns. The elements in the matrix all equal 1. 

  1 1EB =K  (10.14) 

The nodal energy conversion matrix and the energy balance equation for the 

electricity bus are given in (10.15) and (10.16), respectively. 

 EB EB EB=C K J  (10.15) 

 EB DESS =C F 0
 (10.16) 

10.3.2 Modeling of the IL 

According to the concept of the IL’s subtasks and the EH models, an energy-

material integrated model considering industrial loads is established as illustrated 

in Fig. 10.7. In the proposed model, a node can not only represent an energy con-

verter, but also a subtask of the IL. A port can simultaneously represent the ab-

straction of the energy conversion and the material conversion. A branch can not 

only represent an energy flow, but also a material flow. A bus still represents a 

distributed energy network. 

 

Fig. 10.7. The framework of proposed energy-material integrated models for the 

DMSI 

 

Energy 

converter

Subtask 2
Subtask 1

Node

Port

Branch
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Energy 
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In this context, energy and material conversion equations, operating con-

straints, material storage constraints, energy balance equations, and subtask pro-

duction target constraints are sequentially formulated to model the IL. Taking the 

IL in Fig. 10.8 as an example, it has five nodes and eleven branches. The nodes 

consist of three subtasks and two material storages. The set of integrated branches 

(energy flows and material flows) can be expressed as: 

  1 1 2 3 1 2 1 2 13 23 3, , , , , , , , , ,
T

PIL H E E E RM RM IM IM IM IM IM=F  (10.17) 

where 1E , 2E , and 3E  are electricity consumption flows of Subtask 1, Subtask 

2, and Subtask 3, respectively. 1H  is the heat consumption flow of Subtask 1. 

1RM  and 2RM  are input material flows of Subtask 1 and Subtask 2, respectively. 

1IM , 2IM , and 3IM  represent production flows of Subtask 1, Subtask 2, and 

Subtask 3, respectively. 13IM  and 23IM  are input material flows of Subtask 3. 

 
Fig. 10.8. The structure of an IL 

 
(1) Energy and Material Conversion Equations 

Energy and material conversion equations define the relationship between the 

input and output of energy flows and material flows in each energy conversion 

node and subtask node. They model the relationship between the input (including 

energy input and raw material input) and the material production. Different mate-

rials are imported or exported in a certain proportion which is presented by several 

correlation parameters in the energy and material conversion equations. Moreover, 

the energy consumption and the raw material consumption are modeled as linear 

or piecewise linear relationships with the production. Taking Subtask 1 as an ex-

ample, the energy and material conversion equation in (10.21) is composed of the 

port-branch incidence matrix in (10.18), the converter characteristic matrix in 

(10.19), and the nodal conversion matrix in (10.20). 

 

1 1 1 1

1 4 2 5 4

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

T

H E RM IM

 

 
 
 
 =
 
 

− 
  

J 0 0  (10.18) 

Subtask 1

Subtask 2

Subtask 3

Storage 1

Storage 2

1IM

2IM

13IM

23IM

3IM
1E

3E

2E

1RM

2RM

1H



234  

 

 

 

1

0 0 1

0 0 1

0 0 1

h
T

e
T T

rm
T







 
 

=  
 
 

K

 (10.19) 

 1 1 1T T T=C K J
 (10.20) 

 1T PIL − =C F A 0
 (10.21) 

where 
h
T , 

e
T , and 

rm
T  represent the heating consumption rate, the electricity 

consumption rate, and the raw material consumption rate of Subtask 1. A  is a giv-

en 1 11  matrix. The element 1, fA  is a constant term in the linear relationship be-

tween energy consumption and production. 

(2) Operating constraints 

The operating constraints of different subtasks are related to their production 

characteristics. According to the classification of subtasks in chapter 10.2.1, Sub-

task1, Subtask 2, and Subtask 3 in Fig. 10.8 are set as a discrete subtask, a contin-

uous subtask, and a flexible subtask, respectively. 

For Subtask 1 (discreet subtasks), the adjustment of production is through shut-

ting down or starting part of assembly lines. Therefore, the total production vol-

ume is an integer multiple of a unit production volume: 

 1 11 0,1,2,...,IM c IM IM n=  =  (10.22) 

where 1IM  represents the unit production volume of an assembly line. n  is the to-

tal number of assembly lines in Subtask 1. 

For Subtask 2 (continuous subtasks), the adjustment of production is also 

through shutting down or starting part of assembly lines. However, the power and 

production of an assembly line are small and the number of assembly lines is large 

in a continuous subtask. Therefore, the production can be adjusted approximately 

continuously and is subject to the maximum production and the minimum produc-

tion: 

 2,min 2,max2IM IM IM   (10.23) 

For Subtask 3 (flexible subtasks), the production can be flexibly adjusted, 

therefore it is also limited by the maximum production and the minimum produc-

tion: 

 3,min 3,max3IM IM IM   (10.24) 

Moreover, ancillary services provide ancillary materials for other subtasks. 

Their operating constraints are modeled using the same methods for other catego-

ries of subtasks. 

(3) Material storage constraints 

Like the energy storage in the DESS, the material storage also brings virtual 

branches and virtual ports to the original model. The set of branches is augmented 

to: 
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 1 2, ,
T

T
PIL TS TS PILS S  =   F F  (10.25) 

Taking Material Storage 1 as an example, the port-branch incidence matrix and 

the converter characteristic matrix are formulated in (10.26) and (10.27), respec-

tively. In this context, the nodal energy conversion matrix and the energy conver-

sion equation of Material Storage 1 node are presented in (10.28) and (10.29), re-

spectively. 

 

1 2 1 13

1 3 6 3 2

1 0 0 0 0 virtual port

0 0 1 0 0 input port

0 0 0 0 1 output port

TS TS

TS

S S IM IM

 

 

 
− → 

 
= → 
 − →
  

J 0 0  (10.26) 

  1 1 1 1TS =K  (10.27) 

 1 1 1TS TS TS=C K J
 (10.28) 

 1TS PIL =C F 0
 (10.29) 

The production storing constraint, the production releasing constraint (which 

may be limited by the transportation capacity to the linked subtask), and the ca-

pacity constraint of material storage nodes are presented: 

 1,min 1 1,max

1,min 1 1, 1 1,max

TS TS TS

TS TS TS t TS

S S S

S S S S−

 −    


  + 

 (10.30) 

where 1,maxTSS  and 1,minTSS  refer to the maximum storing and releasing rate, re-

spectively. 1,maxTSS  and 1,minTSS  are the maximum and minimum storage capacity, 

respectively. 1, 1TS tS −  represents the material inventory. 

(4) Energy balance equations 

The energy balance equations can be formulated using the same method in the 

DESS. In the example of Fig. 10.8, the energy balance equations for the electricity 

bus are expressed by Eq. (10.13) - (10.16). 

(5) Subtask production target constraints 

 
Fig. 10.9. The structure of an IL 

 

The IL provides the system with flexibility for a period of time by shifting part 

of the production. However, within an entire production cycle, the scheduled total 

production volume must be met. Therefore, for Subtask i , if the production iIM  

T1 S1
T2

S2
T4

S4
T6

S6
T7

S7

T3 S3 T5 S5

1IM 2IM 4IM 6IM 7IM

12
rw 24 34,rw rw  46 56,rw rw  67

rw

3IM 5IM



236  

 

 

is reduced at time t , the existing inventory ( , 1i i tS S − + ) plus the maximum produc-

tion in subsequent periods ( ,max

1

T

i

t

IM
+

 ) should be greater than the scheduled pro-

duction volume ( iTA ) plus the consuming production by subsequent subtasks in 

subsequent periods. 

The consuming production by subsequent subtasks is formulated based on the 

unidirectional material flow from node i  to the output node. Taking a complex IL 

in Fig. 10.9 as an example, the consuming production 1IM  of Subtask 1 is deter-

mined by the production of Subtask 2, Subtask 4, Subtask 6, and Subtask 7. The 

consuming production 5IM  of Subtask 5 is only determined by the production of 

Subtask 6 and Subtask 7. Therefore, the schedule constraint of Subtask 1 is written 

as: 

 

( ) ( )

( ) ( )

1,max1 1, 1 1 2 2 2, 1 4 4 4, 1

12 12 241

6 6 6, 1 7 7 7, 1

12 24 46 12 24 46 67

1 1

1 1
                                             

T

t t trm rm rm
t

t trm rm rm rm rm rm rm

S S IM TA TA S S TA S S

TA S S TA S S

  

      

− − −

+

− −

 + +  + −  − + −  −

+ −  − + −  −



 (10.31) 

where rm
ij  represents the material conversion ratio from iIM  to jIM . 

Returning to the IL in Fig. 10.8, subtask schedule constraints of the IL can be 

expressed as: 

 ( )max, 1 , 1

1

T

PIL PIL t PIL PIL PIL t

t

− −

+

 + + − − − S S IM H TA S S TA  (10.32) 

where T is the total time of the production cycle. TA  refers to the set of sched-

uled production volumes of different subtasks. PILH  is an incidence matrix calcu-

lated by: 

 

,

1/ if node  is on the uniderctional flow from node  to the output node 

0 otherwise

rm

i j
i j

j i
H


→


= 




 (10.33) 

where 
rm

i j


→  represents the product of all material conversion ratios from 

node i  to node j . 

10.3.3 Modeling of the DMSI by combing the DESS and the IL 

Integrating the DESS in Fig. 10.6 and the IL in Fig. 10.8, the DMSI is given in 

Fig. 10.10. The DMSI has eight nodes, three buses, and twenty-one branches. The 

nodes consist of a CHP, a GB, an ES, three subtasks, and two material storages. 
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The buses consist of an electric bus, a natural gas bus, and a heating bus. The set 

of integrated branches (energy flows and material flows) can be expressed as: 

 ,
T

T T
DESS PIL =  F F F  (10.34) 

 

Fig. 10.10. The structure of a DMSI composed of a DESS and an IL 

 

In general, with nodal energy conversion matrices of all energy converters and 

buses in the DESS and all subtasks in the IL, the system energy conversion matrix 

of the DMSI can be expressed as: 

 1 2 3 1 2, , , , , , , ,
T

T T T T T T T T T
CHP GB ES EB T T T TS TS         =  C C C C C C C C C C  (10.35) 

Consequently, comprehensively considering energy and material conversion 

equations, operating constraints, storage constraints, energy balance equations, 

and subtask production target constraints in the DESS and the IL, the system oper-

ating equations and constraints of the DMSI can be summarized as: 

 

( )

,min ,max

,min ,max

,min ,max

min max

min 1 max

max, 1 , 1

1

0,1,2,...,

DESS DESS DESS

ds dsds ds

cs cscs

fs fsfs

t

T

PIL PIL t PIL PIL PIL t

t

IM n

−

− −

+

 − =


 
 =  =

  

  

    


  + 

 + + − − − 




CF A 0

F F F

IM C IM

IM IM IM

IM IM IM

S S S

S S S S

S S IM H TA S S TA



 (10.36) 

where nodeC  and F  represent the augmented nodal energy conversion matrix and 

the augmented branch vector considering virtual branches brought by energy stor-

age and material storage, respectively. dsIM , csIM , and fsIM  refer to the set of the 

output material flows of discreet subtasks, continuous subtasks, and flexible sub-

tasks, respectively. S  represents the set of energy storage increments and mate-

rial storage increments. 
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  0 0 0, ,in G E H=F

The multi-energy input

 ( ) ,s.t. ,n m
in in  =    F F F F

 ( ) , Eq. (36)m n
in

 = F F

can be simultaneously 

adjusted within the IFR 

Definition of the IFR 
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10.4 The method to determine the flexible region of industrial loads 

10.4.1 Modeling of the integrated flexible region 

As shown in Fig. 10.10, the energy conversion and the production plan adjust-

ment can constitute an IFR of multi-energy inputs. The multi-energy input of the 

DMSI inF  can be simultaneously adjusted within a feasible region represented by 

 . Based on the integrated model of the DESS and the IL, the input of the 

DMSI can be described as: 

 in in =F H F  (10.37) 

where inH  represents the incidence matrix to extract the input element from the 

set of branches. In the example of Fig. 10.10,  0 0 0 1 2, , , ,in G E H RM RM=F . Con-

sidering only the energy input, the input of the DMSI is  0 0 0, ,in G E H=F . 

In general, based on the DMSI operating equations and constraints, the feasible 

region of ( ), inF F  can be formulated as: 

 ( ) , Eq. (10.36)m n
in

 = F F  (10.38) 

where m  and n  represent the number of all branches in the DMSI and the num-

ber of input branches, respectively. 

The operating constraints equations and constraints in Eq. (10.36) are linear 

and the state variable F  is bounded. Therefore,  is a bounded polyhedron, which 

is termed a polytope. The IFR can be mathematically defined as the projection of 

  onto to subspace of inF : 

 ( ) ,s.t. ,n m
in in  =    F F F F  (10.39) 

It should be noted that since  is a polytope, the projected region   of   is al-

so a polytope which has been proved in reference [37]. The IFR maps all the fea-

sible operating states of the DMSI to the energy input vector. On this basis, the 

operation of the energy delivery and generation can be scheduled more optimally 

and flexibly without interfering with the independent operation of the local sys-

tems. 

10.4.2 The calculation method 

In order to calculate the projection of the polytope, a method based on vertex 

enumeration is proposed. First, we select free variables from all branch variables. 

Free variables are defined as any two branch variables that are linear independent. 

Then, all vertices of the polytope in the space of free variables are enumerated and 

projected to the subspace of the input variables. Finally, compare these projection 

points in the subspace and retain vertices. The flow chart of the calculation proce-

dures is shown in Algorithm 10.1. 

(1) Selecting free variables 
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Considering some variables in the set of branches are linearly correlated, all 

variables should be divided into two categories, i.e. bound variables and free vari-

ables. Bound variables are defined as variables that can be described by a linear 

combination of one or more free variables. Free variables are linearly independent 

with other free variables. Taking the branches connected to the CHP node as an 

example, the input gas flow, the output electricity flow, and the output heating 

flow are linearly correlated. Therefore, any one of them can be selected as a free 

variable, and the others are bound variables that can be represented by the linear 

function of the free variable. Enumerating vertices of the feasible region in the 

space of free variables can save computing time and resources compared with do-

ing that in the space of all variables. Specific steps are listed as follows: 

Step 1. Reform the system energy and material conversion matrix of the DESS 

and the IL into a row echelon form. Taking the conversion matrix of Subtask 1 in 

Fig. 10.8 as an example, the row echelon form of Eq. (10.20) is presented as: 

 

1 1 1 1

1 4 2 5 4

0 0 0 1

0 0 0 1

0 0 0 1

h
T

e
T T

rm
T

H E RM IM







 

 
− 

 
= −
 
 −
  

C 0 0  (10.40) 

Step 2. Select the variables corresponding to the leading coefficients of nonzero 

rows as bound variables and the others are free variables. In Eq. (10.40), 1H , 

1E , and 1RM  are variables corresponding to the leading coefficients of nonzero 

rows. Therefore, for Subtask 1, 1IM  can be selected as a free variable. 

In general, for the DMSI, reform the system energy and material conversion 

matrix, i.e. Eq. (10.35), into a row echelon form, and free variables can be select-

ed. Moreover, all variables in the system can be represented by these free varia-

bles using an incidence matrix fH . Let fF  and f  represent the set of free vari-

ables and the number of free variables, respectively. Each constraint in Eq. (10.36) 

can also be transformed into a constraint on free variables. 

 f f =F H F  (10.41) 

Consequently, the feasible region of ( ),f inF F  is presented in Eq. (10.42) and 

the IFR reformulated into the projection of   is presented in Eq. (10.43). 

 ( ) , Eq. (10.36)f n
f in

 = F F  (10.42) 

 ( ) ,s.t. ,n f
in f f in =    F F F F  (10.43) 

(2) Enumerating vertices and forming the IFR 

If an IL has discreet subtasks, there are integer variables in Eq.(10.35), which 

could make the problem non-convex. To solve this problem, these integer varia-

bles are fixed first and the IFR is calculated based on a fixed set of integer varia-

bles. Then, combine different IFRs. Specific steps are listed as follows: 
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Step 1. Fix a set of integer variables. 

Step 2. Enumerate vertices of the feasible region  . Select f  constraints in 

Eq. (10.36) arbitrarily to form a judgment matrix iC . If iC  is not full of rank, 

there are linearly correlated constraints among the f  constraints, and the next 

constraint selection continues. If iC  is full of rank, a unique solution can be ob-

tained, and the solution is a vertex ,
v
f iF  of polytope  . After all the constraint 

combinations are traversed, all the vertices of polytope   can be obtained. 

Step 3. Project the vertices of polytope   onto the subspace of input energy 

vector inF . 

Step 4. In the subspace of the input energy vector, calculate the vertices of the 

convex hulls composed of the projection points, i.e. 
v
in


F . The vertices of poly-

tope   are represented by 
v
in


F . In three-dimensional space, the incremental 

method [38] can be used to find the vertices of the convex hull. 

Algorithm 10.1: Vertex enumeration. 

#1 Selecting free variables 

1: reform C  into a row echelon form. 

2: select free variables fF . 

 

#2 Enumerating vertices and forming the IFR 

3: for 0,1,2,...,dsIM n=  

4:  for arbitrary f  constraints in Eq. (34): iC  

5:   if ( )irank f=C  

6:    ,
v
f iF = 

1
i i
−

C A  

7:   end if 

8:  end for 

9:  v
f


B  represents the set of the ,
v
f iF  

10:  v v
in in f f
 =F H H F  

11:  the incremental method: 
v v
in in
 →F F  

12: end for 

10.4.3 Case studies and discussions 

1) Illustration of the test system 

Based on the integrated EH model, the topological diagram of the DMSI is 

shown in Fig. 10.11. There are three input energy sources for this system, namely 

electricity power, natural gas, and heating energy. The equipment in the DESS in-

cludes a CHP, an electric heating equipment (EH), a GB, a ES, and a gas storage 
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(GS). The parameters of the equipment are shown in Table 10.1. The IL in the test 

system is a real air conditioning equipment manufacturing plant in China. The 

manufacturing process in the industrial plant can be divided into six subtasks, in-

cluding the coiling and shearing processing, the sheet metal fabrication, the inner 

component processing, the electronic components processing, the final assembly 

processing, and the compressed air production. The first five subtasks are repre-

sented as Subtasks 1-5 in turn and the last subtask is represented as Subtask a. The 

final products of the plant are air conditionings and the specific role of each sub-

task is presented in Table 10.2. 

 
Fig. 10.11. The diagram of the test system 

 

Table 10.1. The parameters of the equipment in the DESS. 

Equipment Power Capacity Efficiency 

CHP 15-250 
3 /m h  - 0.33(

e
G )/0.64(

h
G ) 

EH 0-1000 kW - 0.9 

GB 0-1000 kW - 0.9 

ES 170 kW 96-864 kWh 0.95( c )/0.95( d ) 

GS 90 
3 /m h  40-500 

3m  0.9( c )/0.9( d ) 

 

Table 10.2. The role of each subtask in the entire manufacturing process. 

Subtask Steps Energy input Material input Material output 

Coiling and shear-

ing processing (T1) 
Cutting and bending Power Raw sheet steel 

Steel work cells 

( 1IM ) 

Sheet metal fabrica-

tion (T2) 

Punching 
Power and com-

pressed air 
1IM  

Shaped encasement 

parts ( 2IM ) Welding Natural gas 

Surface treatment Power 

Inner component 

processing (T3) 

Injection modeling 
Power and com-

pressed air 

Raw injection mod-

eling material 
Plastic parts 

Condenser and 

evaporator pro-

cessing 

Power and natural 

gas 

Raw metal parts and 

pumps 

Condensers and 

evaporators 

CHP

GB

ES
EH

GS

Ta Sa

T1 S1

T2 S2

T3 S3

T4 S4

T5 S5

Electricity flow Natural gas flow

Heat flow

Material 1 flow

Compressed air flow

Material 2 flow

Material 3 flow Material 4 flow

Terminal material flow
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Inner component as-

sembly 
Power 

Plastic parts, con-

densers, and evapo-

rators 

Complete inner 

components ( 3IM ) 

Electronic compo-

nents processing 

(T4) 

Welding and as-

sembling 
Power Raw electronic parts 

Useful electronic 

components ( 4IM ) 

Final assembly pro-

cessing (T5) 

Assembling Power 2IM , 3IM , and 

4IM  

Finished air condi-

tionings ( 5IM ) Drying Heat 

Compressed air 

production (Ta) 
- Power Air 

Compressed air 

( aIM ) 

 

Table 10.3. The parameters of different subtasks in the IL. 

Sub-

task 

Type Unit electrici-

ty consump-

tion (kW) 

Unit natural 

gas consump-

tion  

(
3 /m h ) 

Unit heating 

consumption 

(kW) 

Unit com-

pressed air 

consumption 

(
3 /m h ) 

Equipped 

storage ca-

pacity 

Production 

target 

T1 DS 0.93 - - - 2100 825 

T2 CS 0.71 0.057 - 0.57 1900 1176 

T3 CS 7.6 0.4 - 5 150 141 

T4 FS 7.14 - - - 30 21 

T5 FS 7.14 - 1.4 0.71 3600 3359 

Ta AS 1 - - 
-1.1 1240-1760 

3m  

- 

* DS is discreet subtask, CS is continuous subtask, FS is flexible subtask, and AS 

is ancillary subtask 

 

Utilizing the proposed classification method, T1 is a discrete subtask, T2 and 

T3 are continuous subtasks, T4 and T5 are flexible subtasks, and Ta is an ancillary 

subtask. The parameters of these subtasks are shown in Table 10.3. The produc-

tion of subtasks can be adjusted in hour time scales and the production planning 

cycle of the IL is one day. The industrial plant carries out the hourly production 

plan for each subtask one day before the scheduled day. Therefore, the DMSI 

composed of the DESS and the IL can provide the hourly integrated flexibility for 

the MES. Moreover, when providing the integrated flexibility, it is required to 

meet the production targets at the end of each day. The production of T5 repre-

sents the terminal materials of the IL, while the production requirements of T1-T4 

are to reserve some intermediate materials for the next day’s production to ensure 

continuity between the production cycles. T1 has three assembly lines and the unit 

production of each is set as 70, which can be formulated by 11IM c IM=  , 

1 0,1,2,3IM = , and 70c = . The maximum production of other subtasks at differ-



243 

 

ent times and the day-ahead production schedule of these subtasks are given in 

Fig. 10.12. 

In order to validate the proposed method to explore the IFR of the DMSI, three 

cases are conducted. Case 1 compares the proposed method with a benchmark to 

verify the accuracy of the proposed method. Case 2 respectively analyzes IFRs of 

the DESS and the IL. Besides, their IFRs are compared with that of the DMSI 

considering the integration of the DESS and the IL. Case 3 analyzes the impacts of 

fixing one type of input energy on the flexibility of the other input energies. Case 

4 analyzes the factors in the IL that affect the IFR of the DMSI, including subtask 

types and production capacities. 

 
Fig. 10.12. The maximum production and the day-ahead production schedule of 

subtasks at different times 

 

2) Case 1: the verification of accuracy compared with a benchmark method 

In this case, in order to verify the accuracy of the proposed method for describ-

ing the boundaries of the integrated flexibility, the proposed method (M_I) is 

compared with a numerical sampling method (M_II). The numerical sampling 

method can find feasible solutions by testing all solutions, although the computa-

tional efficiency is usually very low. In specific, the M_II discretizes all variables 

in a certain step and calculates all the numerical feasible points. The convex hull 

formed by all feasible points is the IFR found by the M_II. 

The IFRs of the test system at time ten calculated by the M_I and the M_II are 

shown in Fig. 10.13. It can be concluded that the IFRs calculated by the two 

methods are the same within a limited error. In specific, the volume difference be-

tween the two IFRs is 0.26%. If the discrete step in the M_II is small enough, the 

two IFRs should completely coincide. 
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Fig. 10.13. The IFRs at time ten calculated by (a) the vertex enumeration method 

(M_I) and (b) the numerical sampling method (M_II) 

 

3) Case 2: the contribution of the IL and the DESS to the IFR of the DMSI 

In this case, in order to compare IFRs of the DESS and the IL with that of the 

DMSI, three scenarios are presented. 

Scenario 1 only considers the flexibility of the DESS, while the terminal load, 

i.e. the IL, is fixed. 

Scenario 2 only considers the flexibility of the IL, while the operation of 

equipment in the DESS is not adjustable. 

Scenario 3 takes both the flexibility of the DESS and that of the IL into consid-

eration. 

Fig. 10.14 illustrates IFRs of the DESS, the IL, and the DMSI at time ten. The 

conclusion can be drawn that the integration of the DESS and the IL can provide 

more flexibility than a single section. The IFR of the IL and the IFR of the DESS 

complement each other to form a comprehensive IFR of the DMSI. As shown in 

Fig. 10.14(c) and Fig. 10.14(d), the IL’s IFR and the DESS’s IFR are part of the 

IFR of the DMSI. The IFR of the DMSI is not a simple sum of those of the DESS 

and the IFR, but a superposition in various dimensions. In order to compare the 

size of each IFR more intuitively, after converting and normalizing different ener-

gy inputs in proportion, the volume of the DMSI’s IFR is 12.7 times that of the 

DESS’s IFR and 15.1 times that of the IL’s IFR. 
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Fig. 10.14. The IFRs at time ten in different scenarios: (a) the IFR of the DESS; (b) 

the IFR of the IL; (c) the IFRs of the DESS and the DMSI; (d) the IFRs of the IL 

and the DMSI 

 

 

Fig. 10.15. The IFRs projected to the input electricity flow during a whole produc-

tion planning cycle (a) in Scenarios 1 and 3; (b) in Scenarios 2 and 3 

 

Fig. 10.15 shows the IFRs projected to the input electricity flow during a whole 

production planning cycle. It also indicates that the input energy can be adjusted in 

a wider range after considering the integrated flexibility of the DESS and the IL. 

Moreover, it can be found that the flexibility of the DMSI is reduced during the 

last time period of the production cycle, especially the down regulation ability. In 

this context, if the production plan of the DMSI is reduced in the beginning peri-

ods, the production cannot be reduced a lot during the last few periods. This is be-
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cause if the production is reduced, there will not be enough time to make up for 

this part of the shortfall and the production target will therefore not be achieved. 

Furthermore, if the industrial load takes the initiative to increase production in ad-

vance, the subsequent production arrangements can be more flexible, enhancing 

the flexibility during the subsequent time. 

4) Case 3: the impact of one fixed input energy on the IFR of the DMSI 

In this case, in order to analyze the interaction between the flexibility of vari-

ous input energy, two scenarios are presented. 

In Scenario 1, the heating energy input is fixed. If the terminal IL changes its 

heating energy demand, the operations of the energy converter in the DESS must 

be adjusted accordingly. 

In Scenario 2, the heating energy input is adjustable. 

Since the heating energy input in Scenario 1 is fixed, the IFR in Scenario 1 is a 

two-dimensional polytope. Moreover, the IFR in Scenario 2 can also be projected 

onto the same two-dimensional subspace. At time ten, the IFRs in Scenarios 1 and 

2 are shown in Fig. 10.16(a). The results show that if the flexibility of one energy 

input is restricted, the flexible region composed by the other two energy inputs 

will be reduced accordingly. This is because when a type of energy input is fixed, 

the production schedule of the IL and the operation of energy converters in the 

DESS are enforced, resulting in a limitation on the adjustment capabilities. Con-

sequently, the energy demand for electricity and natural gas of the DMSI is less 

flexible. In order to compare the size of IFRs in different scenarios more intuitive-

ly, after converting and normalizing different energy inputs in proportion, the area 

of the IFR in Scenario 2 is 1.98 times that in Scenario 1. 

 
Fig. 10.16. The IFRs in Case 3: (a) The two-dimensional IFRs at time ten in Sce-

narios 1 and 2; (b) The IFRs projected to the input electricity flow during a whole 

production planning cycle 

 

Fig. 10.16(b) shows the IFRs projected to the input electricity flow during a 

whole production planning cycle. In the same way, the fixed heating energy input 

limits the electric up and down regulation ability of the DMSI. In this case, the 

lower bound of the flexibility is greatly affected, while the upper bound of the 

flexibility is less affected. This is because the operation and production of the sys-

tem must maintain at a certain level to consume the input heating energy. Corre-
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spondingly, the electric energy consumed by this part of operation and production 

cannot be adjusted downward without a lower limit. However, when the system 

increases the production and the electricity consumption, the corresponding in-

crease in heating energy demand can be supplied by the CHP and the GB in the 

DESS. Furthermore, it can be concluded that for the multi-energy system on the 

utility side, the coordinated optimal operation of multi-energy systems can max-

imize the flexibility of multi-energy loads on the demand side. 

5) Case 4: the impacts of IL parameters on the IFR of the DMSI 

In this case, the impacts of the hourly maximum production and the type of 

subtasks of the IL on the IFR of the DMSI are discussed. In this context, four sce-

narios are conducted and their details are presented in Table 10.3. Scenarios 1-3 

have the same types of subtasks but different production capacities. Scenarios 1 

and 4 have the same production capacity but different types of subtasks. 

 

Table 10.3. The parameters of different scenarios in Case 4. 

Scenarios Maximum production of different subtasks Type of subtasks 

1 Base T1-DS, T2-CS, T3-CS, T4-FS, T5-FS, Ta-AS 

2 0.85 Base T1-DS, T2-CS, T3-CS, T4-FS, T5-FS, Ta-AS 

3 1.15 Base T1-DS, T2-CS, T3-CS, T4-FS, T5-FS, Ta-AS 

4 Base T1-DS, T2-DS, T3-DS, T4-DS, T5-DS, Ta-AS 

* DS is discreet subtask, CS is continuous subtask, FS is flexible subtask, and AS 

is ancillary subtask 

 

To analyze the impact of the hourly maximum production on the IFR, Figs. 

10.17(a)-(c) show IFRs of the DMSI in scenarios 1-3 at time ten. It indicates that 

relaxing the hourly maximum production limit of each subtask in industry con-

tributes to an increase in the flexible region for the DMSI. After converting and 

normalizing different energy inputs in proportion, the volume of the IFR in Sce-

nario 1 is 1.56 times that in Scenario 2 and 0.83 times that in Scenario 3. Fig. 

10.18 shows the IFRs projected to the input electricity flow during a whole pro-

duction planning cycle. Increasing the hourly maximum production of each sub-

task can directly increase the upper bound of the IFR. On the other hand, since the 

upper bound of the IFR increases, the DMSI has more capacity to make up for the 

possible margin due to the reduced production contributing to an increase of the 

lower bound for the IFR. In addition, the lower bound in Scenario 2 begins to in-

crease very early, while that in Scenario 3 begins to increase in the last few hours. 

This also indicates that the down regulation ability of the DMSI depends on the 

maximum production of subtasks. 
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Fig. 10.17. The IFRs (a) at time ten in Scenarios 1-3; (b)at time five in Scenarios 1 

and 4 

 

To analyze the impact of the types of subtasks on the IFR, Fig. 10.17(a) and (d) 

show IFRs of the DMSI in Scenarios 1 and 4 at time ten. It can be seen that the 

IFR in Scenario 4 is not a polytope, but a combination of two polytopes. In Sce-

nario 4, all subtasks except the ancillary subtask are discreet subtasks. Therefore, 

if the flexibility of the DESS and the Ta is not considered, the IFR is just a few 

points in the three-dimensional space. The operating states of the industrial loads 

can only be switched between several feasible points. With the flexibility provided 

by the DESS, the IFR of the DMSI has been greatly expanded. When the DESS, 

continuous subtasks, and flexible subtasks provide sufficient flexibility for the 

DMSI, the non-convex polyhedron can also be approximately regarded as a poly-

tope with a limited error. 

When the system operators on the utility side schedule the coordinated opera-

tion for the multi-energy system, whether the scheduled operating point of the 

demand side system is inside the polytope determines whether the schedule is fea-

sible. So far, the scheduling on the utility side can make full use of the flexibility 

on the demand side without collecting the specific parameters and operating con-

ditions of the demand side system. 
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Fig. 10.18. The IFRs projected to the input electricity flow during a whole produc-

tion planning cycle in Scenarios 1-3 

10.5 Outlook of incorporating integrated demand response in risk 

control of multi-energy systems 

Through the IFR, the interaction between the utility system and the DMSI can 

be divided into the following steps: 

Step 1. First of all, the DMSI makes a production plan within a production cy-

cle based on self-interest factors such as energy price and production target. With 

the formulated plan, the scheduled multi-energy demand of the DMSI is the red 

point in Fig. 10.19. On this basis, with the help of energy converters in the DESS 

and adjustable subtasks in the IL, the multi-energy demand of the DMSI can be 

strategically adjusted within a certain region rather than fixed at a point. There-

fore, the DMSI could construct its IFR considering the energy conversion con-

straints and production targets and then submit it to the utility system. 

Step 2. When a contingency happens, the utility operators can dispatch flexible 

resources to keep the energy balancing for the MES. Taking the scenario of re-

newable energy’s uncertainties in power systems as an example, the hourly fluctu-

ation of renewable energy could cause a power shortage which is the gray part of 

the histogram shown in Fig. 10.19. It can be observed that the power shortage is 

greater than the conventional flexibility provided by the supply side. If the flexible 

resources on the demand side remain undetected and unexcavated, energy imbal-

ance in power systems could cause frequency drop and widespread outrages. Simi-

larly, energy imbalance in natural gas systems or thermal energy systems could al-

so contribute to severe load shedding. Therefore, after mastering the IFR of the 

DMSI, the system can strengthen its flexibility and avoid such serious conse-

quences. The utility operators dispatch the conventional flexible resources and the 

flexibility provided by the DMSI to lead a new energy balance for the MES. 

Step 3. Utility operators send the regulation signals to DMSIs and the DMSI 

can adjust its multi-energy demand from the scheduled point to the rescheduled 

point as shown in Fig. 10.19. 
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Fig. 10.19. The application of the IFR 

 

This chapter proposes a novel method to explore the integrated flexible region 

of distributed multi-energy systems with industrial loads (DMSI). At first, the ad-

justable components in the industrial load (IL) are summarized into four catego-

ries of subtasks according to their respective load characteristics. On this basis, an 

energy-material integrated model is proposed to couple the energy converters in 

the district energy supply system (DESS) and the subtasks in the IL considering 

the production targets. After modeling the DMSI, the mathematical expression for 

the integrated flexibility is represented by an integrated flexible region (IFR) 

based on the polytopic projection. The calculation method based on vertex enu-

meration for the IFR is then proposed. Case studies show the effectiveness of the 

proposed evaluation method and analyze different factors that affect the IFR. In 

specific, the adjustabilities of the DESS and the IL both make a great effort to the 

IFR of the DMSI. 

In this chapter, the IFR composed of the electricity input, the natural gas input, 

and the heat input to the DMSI is mainly considered. To achieve the net-zero car-

bon emission target, the use of natural gas in industrial loads may reduce and be 

replaced by cleaner energy sources, such as hydrogen [39]. Under this circum-

stance, the proposed method could also be utilized to excavate the IFR of electrici-

ty, heat, and hydrogen inputs. In other words, the proposed method to explore the 

integrated flexibility of multi-energy vectors is a general method and not limited 
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to specific energy sources. In general, the proposed flexibility exploring scheme 

constructs a bridge for the demand-side flexible resources to interact with the op-

eration of the multi-energy systems (MES) and excavate enormous flexibility for 

the MES to accommodate more renewable energy. With more interactions be-

tween end-users and the utility system, the feasible operating states of MES can be 

effectively expanded and more renewable energy can be accommodated, contrib-

uting to the reliable, economic, and environmentally friendly development for fu-

ture energy systems. 
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