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240 Renewable Energy Integration to the Grid

10.1  INTRODUCTION

10.1.1  Importance of rIsk-Based system analysIs

With the worldwide transition toward low-carbon and sustainable energy utilization 
in recent years, the share of renewable generations is increasing rapidly in electricity 
systems. Till the end of 2018, the renewable generation (including hydro, wind, solar, 
biofuels, waste, geothermal, and tide) had reached 6879 TWh, an increase of 21.23% 
compared with 2015 [1]. In over 20 countries, the share of renewable generation exceeds 
50%. A roadmap to complete renewable electricity in Europe and North Africa was 
proposed in [2]. In Denmark, the total wind generation equaled 47% of its electricity 
consumption in 2019, which continues to grow in recent years [3]. The US National 
Renewable Energy Laboratory proposed a blueprint that aims to realize 80% renewable 
electricity generation in 2050 [4]. China proposed carbon neutrality and peak carbon 
dioxide emission schemes, and focused on renewable generations as one of the solutions.

However, due to the fluctuation, intermittency, and unpredictability of the renew-
able generations, it also brings potential risks to the reliable and secure operation of 
electricity systems. In Denmark, it was reported that more than half of the power 
system’s imbalanced situation was caused by the fluctuation of wind, and this kind 
of circumstances will occur more frequently in the future [5]. The random failure of 
the wind turbine itself may also become an important factor. In 2019, the simultane-
ous failures of Hornsea offshore windfarm and Little Barford gas-fired units (GFU) 
led to the blackout in the UK [6]. Therefore, it is important to study the system risks 
under the high penetration of wind.

10.1.2  modelIng of the UncertaIntIes of WInd

In order to analyze the system’s risks under the large penetration of wind, the prereq-
uisite is the modeling of wind uncertainties. The prediction method of wind speed 
is categorized according to different standards, as illustrated in Figure 10.1. By tim-
escale, it could be categorized into long term, medium term, short term, and ultra-
short term. According to the different mathematical methods, it can be divided into 
mechanism- and data-driven approaches. According to different spatial scales, the 
prediction can be targeted on one single wind turbine, or a windfarm, or a cluster of 
adjacent windfarms. According to the output results, it can also be divided into point-
by-point and probabilistic predictions.

FIGURE 10.1 Systematic interpretation of wind prediction methods.
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241Risk Evaluation of Electricity Systems

The prediction of wind speed has been extensively studied in previous studies.  
A joint particle swarm optimization and gray method was used in the wind forecast 
in [7] to improve the accuracy. A pattern-based forecast method was proposed in [8] 
based on the unified key component evaluation. A multitime step-based operational 
wind generation forecast method was proposed in [9].

Besides the fluctuations in wind speed, the uncertainty of wind generation also 
comes from the random failure and repair of wind turbines. These two factors should 
be considered together. A reliability model of a windfarm was proposed in [10], con-
sidering both wind fluctuations and forced outages of wind turbines. The reliability 
of windfarm was studied in [11], which uses multistate Markov and cross-correlation 
function to represent the fluctuation of wind in several locations.

10.1.3  handlIng the UncertaIntIes of reneWaBle energIes 
In the operatIon of poWer systems

Many research papers have incorporated the uncertainties of renewable energies in 
the economic dispatch, scheduling, or planning of electricity systems. A comprehen-
sive method for the probabilistic electric power flow was proposed in [12] to assess 
the fluctuation from photovoltaic generations on the electricity system operation. 
The simplified day-ahead scheduling method was proposed in [13] for wind generat-
ing units. A new scheduling method for generating units was established in [14] for 
promoting the reliability of electricity systems under high wind penetration. A risk-
oriented stochastic optimization model for the capacity market was developed in [15] 
to minimize the maximum regret with renewable energies, and a practical case in 
China was investigated. Reliability-based expansion planning of electricity systems 
with renewable generations was conducted in [16] for lowering carbon emission.

On the other hand, a new rising technology, power-to-gas (P2G), offers a promis-
ing solution to the promotion the utilization of renewable energies. It can convert sur-
plus electric generation from renewable generators into hydrogen or synthetic natural 
gas. By this means, the electricity can be indirectly stored for later use, thus prevent-
ing the waste [17]. Though the gas network does not require a precisely balanced 
supply and demand, excessive injection of gas into the gas network could still cause 
pressure fluctuations, threatening its secure operation. Under this new circumstance, 
the support from the gas system on renewable energy utilization and its influence on 
operational risks of electricity systems is worth studying. Some quantitative studies 
have been conducted to assess economic influence of P2Gs on the electricity systems 
and gas networks in the operation [18,19]. However, the impacts on system risk have 
not been studied yet, especially in terms of spatial and temporal risks.

10.1.4  evalUatIon of system over-lImIt rIsk IndIces

The risk evaluation of electricity systems with large penetration of renewable energies 
has been extensively studied in previous researches. Both long- and medium-term 
reliability indices were assessed in [20,21] using universal generating function tech-
niques, respectively, with a large share of wind generation. The impacts of different 
wind power forecasting techniques on the risk evaluation of electricity distribution 
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networks were evaluated in [22]. The risk of unit commitment in wind integrated 
electricity systems was assessed in [23].

However, the studies described above focused on analyzing the risk in the long 
term over the whole system, while not considering the short-term and location-vary-
ing risks in the operational phase. The powers of renewable generations, such as wind 
and solar, vary in time and location [24]. For example, the photovoltaic generation is 
highly correlated with the light intensity, which is different throughout the day. The 
resource endowment of wind generation also varies from coastal mountain areas. 
This will result in different power flow patterns in the transmission system at dif-
ferent time points and further affect the risk in electricity systems [25]. Therefore, 
spatial-temporal risk analysis is urgently required.

The temporal risk, also known as short-term or operational reliability, has been 
previously studied in electricity systems. Reference [26] introduced the basic concept 
of operational reliability. It has been demonstrated as valuable information in risk-
based scheduling, load shedding devising, and other decision-making processes. The 
short-term risk indices, which reflect the dynamic security of renewable generations, 
were proposed in [27]. The spatial risk is usually specified in nodal scales in the 
electricity system risk assessment. It helps nodal customers to estimate the reliability 
and quality of their electricity supply. The correlations between nodal energy price 
and nodal reliability indices were studied in [28]. The nodal reliability impact from 
electric vehicles on electricity systems was investigated in [29]. However, few studies 
have evaluated the spatial and temporal risks jointly or studied the impact of renew-
able generations on the electricity system risks in these two dimensions.

10.1.5  contrIBUtIon of thIs chapter

To bridge the research gaps, this chapter proposes a spatial-temporal risk assessment 
approach in electricity systems under large penetrations of renewable generations. 
The contributions of the chapter are as follows:

 1. The temporal and spatial reliability of the windfarm is modeled. Both spa-
tial and temporal correlations in the wind speed prediction and the impact 
of wind turbine failures are jointly considered. Moreover, the multistate 
reliability models of coupling components, i.e., GFU and P2G, are modeled 
considering the interdependency between the electricity and gas systems.

 2. An optimal control framework of the electricity system under the uncer-
tainty of wind and integration of gas systems is proposed. To avoid the 
potential risks on the gas system operation by the gas injection of P2Gs, the 
constraints imposed by gas flow dynamics are incorporated in the optimal 
control framework.

 3. The risk indices are extended in both time and space dimensions. To this 
end, the impact of renewables on the electricity system operation at different 
locations can be quantified. Furthermore, to reduce the computation bur-
dens, the discretized partial derivative equations (PDEs) of gas flow dynam-
ics are further relaxed into second-order cone (SOC) constraints, so that the 
off-the-shelf solvers can be applied more efficiently.
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243Risk Evaluation of Electricity Systems

10.2  TEMPORAL AND SPATIAL MODELING OF UNCERTAINTIES

To study the risks to the electricity system during operation, the stochastic pro-
cess of the available generating capacity of components, including the windfarm, 
GFU, P2G, and other traditional fossil generating units (TFU), should be modeled. 
Therefore, the temporal and spatial reliability of multiple windfarms is modeled, and 
the reliability models of GFUs and P2Gs are established.

10.2.1  temporal and spatIal relIaBIlIty model of WIndfarms

The reliability of the windfarm is indicated by its available capacity to generate elec-
tricity [30]. It is related to two major factors, wind velocity and state of wind turbines. 
Wind velocity essentially depends on the weather system. It not only evolves in time, 
but is also correlated among different locations. Therefore, the precision will be sig-
nificantly improved if we forecast the wind speed in both time and space dimensions.

In the operational phase, the Markov process is commonly adopted to approxi-
mate the chronological wind speed at a single location [5,21]. To establish the Markov 
process, the wind speed is first clustered into a finite set of states [31]. The number of 
states is flexible, depending on the accuracy requirement. Assume that wind speeds 
are the same for different wind turbines at the same windfarm. Generally, denote the 
number of states as NH j

w at the windfarm j. During the operation, the wind speed 

takes random values from , , ,1 2v v vj j j
NH j

w{ }. Suppose the wind speed was at state 0h  

at 0t = . The time-varying probability of wind speed, Pr ( )h t , at each state can be cal-
culated by solving [21]:
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where ,h h
wλ ′ is the state transition rate from state h to h′.

To characterize the wind speed correlations in space, its concept is further extended 
into the temporal-spatial Markov process, as illustrated in Figure 10.2. The spatial 
Markov process was used in geostatistical, data processing, and image processing stud-
ies based on random field theories [32–35]. However, its applications in wind forecast-
ing are still in their infancy. A spatial-temporal Markov process model was developed 
in [36] for ultra-short-term wind speed forecasting. This technique was further applied 
in the operational forecasting of renewable generation in [37]. To quantify the temporal 
and spatial effects of wind generation on the electricity system risks, it is extended to 
consider the random failures of wind turbines and then adopted in this chapter.

Given a dataset of wind speed, consider two windfarms 1j  and 2j . The state tran-
sition probability from windfarm 1j  at state 1h  to the windfarm 2j  at state 2h  can be 
calculated as

 Pr /,
,

,
,

1 2
1 2

1 2
1 2

1
1N Nj j

h h
j j
h h

j
h=  (10.2)
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where j
h
1
1N  is the times when the state of wind speed at windfarm 1j  is 1h . ,

,
1 2
1 2N j j

h h  is the 
times when the state of wind speeds at windfarm 1j  and 2j  are 1h  and 2h , respectively. 
When 1 2j j= , it is defined as the self-transition probability as in the normal Markov 
process. Otherwise, when 1 2j j≠ , it is defined as cross-transition probability, which 
describes the influence from the wind speed at other locations.

Repeat the above process until we obtain all the state transition probabilities. 
Then the state transition matrix between any two windfarms can be described as
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 (10.3)

After formulating the state transition matrix for any pair of windfarms and giving the 
initial values of wind speed at all the locations, the future state of wind speed can be 
forecast utilizing time-sequential Monte Carlo simulation (TSMCS) [5]. However, the 
predicted wind speed at one location may have multiple possible values from other wind-
farms at various locations. We set them as reference values. The final predicted value of 
wind speed at windfarm j at period k, ˆ ,v j k, is calculated by the weighted average [36]:

  

ˆ , 1, 1, 1, , , , , , , , ,

' 1

v v v vj k j j k j j j j k NW j NW j k j j

j

NW

∑κ κ κ κ= + + + + =′ ′ ′

=

 (10.4)

where , ,v j j k′  is the wind speed at windfarm j predicted from windfarm j′ at period k.  
NW  is the number of windfarms. ,j jκ ′  is the weight coefficient from windfarm j′ to 
windfarm j.

FIGURE 10.2 Temporal and spatial reliability model of windfarms.
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To calculate appropriate weight coefficients, the following optimization problem 
is formulated to minimize the prediction error in the given dataset:

 Min ˆ, ,

2

',

v vj k j k

k Kj j
∑( )−

κ
∈

 (10.5)

where ,v j k is the wind speed at windfarm j at period k in the given dataset. K  is the 
set of periods.

According to the predicted wind speed, the available generating capacity of wind 
turbine l in windfarm j at period k, , ,Gj l k

wt , can be calculated as [38]
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where ,v j l
ci , ,v j l

r , and ,v j l
co  are the cut-in, rated, and cut-out wind speeds, respectively 

[39]. ,Aj l, ,Bj l, and ,C j l are the parameters of the specific wind turbine. ,Gj l
r  is the rated 

generating power of the wind turbine.
On the other hand, the operating state of the wind turbine is the other key factor 

determining its generating power. The reliability of a wind turbine can be described 
as the binary state. Thus, the available power generation capacity of windfarm j at 
period k, ,Gj k

w , can be calculated as

 , , , ,

1

G I Gj k
w

j l
w

j l k
wt

l

NLj

∑= ×
=

 (10.7)

where ,I j l
w  is a binary variable. 1,I j l

w =  and 0 denote the perfect-functioning and com-
plete-failure states, respectively. NLj is the number of wind turbines at windfarm j.

10.2.2  operatIonal relIaBIlIty models of coUplIng components

GFU and P2G are the two main categories of coupling components between the 
 electricity and gas systems. Different from the TFUs such as coal-fired units, the 
operational reliability of coupling components not only depends on their inherent 
failure and repair, but also relies on the just-in-time supply of the energy they con-
sume, e.g., gas for GFUs and electricity for P2Gs.

 1. Operational reliability model of GFUs
The operational reliability of GFU is represented using a multistate 

model. Its available electric generating capacity can be reduced partially 
or reduced to zero [40]. The number of states of the GFU j at bus i is 
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represented as ,NHi j
gfu. Thus, during the operational phase, the electric gen-

erating capacity of the GFU by random failure and repair takes values from 

 , , , ,,
,1

,
,

,
, ,G G Gi j

gfu
i j
gfu h

i j
gfu NHi j

g{ }.

The available generating capacity of a GFU also depends on the ade-
quacy of the gas supply, which can be influenced by the status of natural gas 
networks. Thus, the actual electric generating capacity of GFU j at bus i, 

,DGi j
gfu, can be calculated as
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 (10.8)

where ,ai j, ,bi j, and ,ci j are the operating parameters of the GFU. HV  is the 
calorific value of gas [41], and ,wi j

gfu is the gas injection for the GFU during 
the operation.

 2. Operational reliability model of P2Gs
The operational reliability of a P2G facility also depends on both its 

inherent state transition and the electricity supply. The P2G devices work in 
parallel in a practical P2G facility, and their operating conditions are fully 
independent [42]. The reliability of each P2G device is represented as the 
binary state. We assume that the parameters of the P2G devices, including 
failure and repair rates, and capacities are identical. During the operation, 
the gas production capacity ,Wi j

ptg of P2G module j at bus i takes random 

values from 0, ,Wi j
ptg{ }. Therefore, the gas production capacity of the whole 

P2G facility is

 , ,

1

W I Wi
ptg

i j
ptg

i j
ptg

i

NPi

∑= ×
=

 (10.9)

where ,Ii j
ptg is a binary variable. 1,Ii j

ptg =  = 1 and 0 denote the perfect-function-
ing and complete-failure states, respectively, and NPi  is the number of P2G 
modules at bus i.

Gas-producing capacities of P2Gs are also determined by the adequacy of the elec-
tricity at the bus where the P2G is located. The electricity supply may be affected 
by the status of the electricity system. Thus, the gas-producing capacity of the P2G 
facility can be evaluated as [18]

 min , /DW W g Hi
ptg

i
ptg

i
ptg

i
ptg

gη{ }( )=  (10.10)

where DWi
ptg is the gas-producing capacity of the P2G at bus i . gi

ptg is the electric-
ity supply for the P2G at bus i  during the operation. i

ptgη  is the efficiency of the 
P2G facility.
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10.3  MODELING OF POWER SYSTEM AND 
UNCERTAINTY HANDLING APPROACH

During operation, failures of system components and fluctuation of wind power 
could occur, which might lead to the total power generation becoming inadequate 
for the demand. The generators or their reserve margins will be re-dispatched. In an 
even worse case, load curtailment might also be implemented to maintain a balanced 
operation. In particular, the natural gas system also participates in the re-dispatch 
process to back up the electricity system through GFUs, as well as to consume the 
surplus wind energy through P2Gs.

10.3.1  formUlatIon of the optImal control frameWork

The goal of the optimal dispatch is to optimize the generation and load curtailment 
costs. This economic loss of load curtailment can be implicitly quantified using cus-
tomer damage functions [43]. Owing to the time-dependent characteristics of gas 
flow dynamics, the re-dispatch is optimized over a certain period, rather than a single 
time point in the traditional optimal dispatch. Therefore, the optimal re-dispatch is 
formulated as an optimal control problem:
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Subject to (12)–(18), and constraints from the gas network:
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 /, , ,f Xij k i k i k ijθ θ( )= −  (10.17)
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where ,wi k
ptg and ,gi k

ptg are the gas production and electricity consumption, respectively, 
of the P2G j at bus i at period k, and ,i k

gρ  is the gas production price. , ,gi j k is the 
electric output of TFU   j at period k. ,csti j  is the generation cost function for TFU. 
GB and EB are the sets of gas and electricity buses. NGi and NGi

gfu are the sets of 
TFU and GFU at bus i, respectively. ,

,minGi j
tfu  and ,

,minDGi j
gfu  are the lower limits for the 

electric generations of TFU and GFU, respectively. , ,gi j k
w  is the electric generation of 

windfarm. NWi is the number of windfarms at bus i. Di
e is the electricity demand at 

bus i. i
eΩ  is the set of electricity branches linked to bus i. ,fij k is the electric flow from 

bus i to j. ,i kθ  is the phase angle. Xij is the reactance of the electricity branch ij. maxfij  
is the capacity of electricity line ij. The constraints from the gas network are more 
complicated, which will be discussed in the next section.

10.3.2  dynamIc gas netWork constraInts

The idea of imposing constraints from the gas network is to limit the gas withdrawals 
and injections of GFUs and P2Gs, to ensure the secure operation of the gas network.

 1. Reformulation of gas flow dynamic equations
Two PDEs, namely continuity and motion equations, govern the dynam-

ics of gas flow in a pipeline. In a horizontal gas pipeline, the dissipative and 
isothermal gas flow is described by [44]:
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where q and p are the quantity of gas flow and gas pressure, respectively. 
A is the cross-section area of the pipeline. B is the wave speed of natural 
gas. 0ρ  is the gas density at the standard temperature and pressure. D is the 
diameter. F  is Fanning transmission coefficient.

The above PDEs for the pipeline ij can be discretized using the Wendroff 
formula [18]:
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249Risk Evaluation of Electricity Systems

where x∆  and t∆  are the step sizes in length and time domains. m is the 
index of pipeline sections. ψ  represents the direction of the gas flow, where 

sgn p pi jψ ( )= − . sgn( )x  is the sign function defined by (10.23).
Assume that the gas flow does not change direction during the operation 

[45]. Then, (10.22) can be further relaxed into SOC constraints:
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 3. Initial and boundary conditions
The initial and boundary conditions of the PDEs of the gas flow dynam-

ics are specified in this subsection. The initial condition is given by the state 
variables of the electricity and gas systems in the normal state, where only 
the calculation of the gas flow in the steady-state is involved. The coordina-
tion of electricity and gas systems aims to minimize operating cost IEGSC  by 
controlling the generation schedule of TFUs and GFUs and the gas produc-
tion schedule of gas sources:

 
, ,

, ,
, ,

Min C w cst g
w g g

IEGS i
g

i

i GB

i j i j

j NGi EBi i j i j
gfu

i

∑ ∑∑ρ ( )= +
∈ ∈∈

 (10.25)

Subject to (10.26)–(10.29) and the constraints for electricity system (10.12)–(10.18):

 min maxw w wi i i≤ ≤  (10.26)

 0,w D w w qi i
g

i j
gfu

j NG

i
ptg

ij

ji
gfu

i
g

∑ ∑− − + − =
∈ ∈Ω

 (10.27)

 2 2q C p pij ij ij i j= Γ −  (10.28)

 maxq qij ij≤  (10.29)

where wi  is the gas produced by the gas well at bus i. minwi  and maxwi  are the mini-
mum and maximum gas productions of the gas source. i

gΩ  represents the set of gas 
pipelines that are connected to bus i. qij denotes the gas flow from bus i to j. Cij is a 
characteristic parameter of the pipeline, depending on the length, absolute rugosity, 
and some other properties. maxqij  denotes the maximum transmission capability in the 
gas pipeline ij.
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After solving the optimization problem above, the values of wi , ,gi j, and ,gi j
gfu can 

be obtained. During the intraday operation, the gas pressures in the pipeline segment 
m in period k, , ,pij m k, should be controlled within the secure limits:

 (1 ) (1 ), , , ,p p pij m ij m k ij mγ γ− ≤ ≤ +  (10.30)

where γ  is the tolerance of gas pressure. The initial conditions for the gas pressure 
and gas flow are specified as

 , ,0
2 2 2 1

p p q C L m xij m i ij ij ij ij( )= − Γ ∆
−

 (10.31)

 , ,0q qij m ij=  (10.32)

where Lij is the length of the pipeline ij.
In the gas network, the boundary conditions among the pipelines are

 ,,0, ,0, 1
1

p p j kij k ij k i
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 (10.35)

where Mij is the number of pipeline segments in pipeline ij.

10.4  SYSTEM OVER-LIMIT RISK INDICES AND 
EVALUATION PROCEDURES

The spatial-temporal risk evaluation of the electricity system is the process of pre-
dicting risks for the system operator and nodal customers under a given system 
operating condition. TSMCS is used to sample the temporal and spatial wind speed, 
chronological random failure, and repair of generators and P2Gs during the opera-
tion and calculate the risk indices. The expected interruption of demand (EID) and 
risk of system overload (RSOL) of the electricity system are evaluated, as in (10.36) 
and (10.37) [23, 27]. It is worth mentioning that these two risk indices are extended 
to time-varying indices and are further specified into nodal scale, which provides 
better flexibility to reflect the impact of the temporal and spatial correlations of the 
renewables on the operational risks of the electricity system.
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t lc d NSi i

t
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where n and NS  are the index and numbers of simulation times, respectively. flag( )x  
is the flag function as defined in (10.38). The stopping criterion for the TSMCS is 
calculated by [46]
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 (10.39)

where Var represents the variance function.
The temporal-spatial reliability evaluation procedure for the electricity system 

with renewable generation is presented with the following steps:

Step 1: Input wind speed data. Choose a random initial state for wind speed. 
Set the initial states of wind turbines, generators, and P2Gs to the perfect-
functioning state.

Step 2: Calculate the initial operating condition of the gas system by solving the 
optimization problem in (10.12)–(10.18) and (10.25)–(10.29). Set the initial 
gas flow and pressure in the gas pipelines according to (10.31) and (10.32).

Step 3: Cluster the wind speed at each windfarm into NH j
w states from the 

wind speed database. Calculate the state transition matrix between any pair 
of windfarms according to (10.2) and (10.3).

Step 4: Simulate the temporal and spatial wind speed according to (10.4). 
Compare the predicted value and the actual value in the wind speed data-
base, and calculate the optimal weight coefficients by minimizing the pre-
diction error, as in (10.5).

Step 5: Predict the wind speed at each windfarm with the given weight 
coefficients.

Step 6: Simulate the random failure and repair of wind turbines using TSMCS. 
Generate the available generating capacity sequence of windfarms accord-
ing to (10.6) and (10.7).

Step 7: Simulate the random failures and repairs of GFUs, P2Gs, and TFUs 
according to section 10.2.2.

Step 8: Solve the optimal control of the electricity system considering the 
dynamics of gas flow, according to (10.11)–(10.18), (10.21), (10.24), (10.30), 
and (10.33)–(10.35), and then obtain the electric load curtailment.

Step 9: Calculate the temporal-spatial risk indices according to (10.36) and 
(10.37). Evaluate the stopping criterion for the TSMCS as in (10.39). If 
the criterion is satisfied, then output the risk indices as the final results. 
Otherwise, repeat the next simulation from Step 4.
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10.5  INTERPRETATION OF PROBABILISTIC 
NUMERICAL ANALYSIS RESULTS

To verify the proposed temporal and spatial risk assessment technique, an IEEE 
24-bus RTS [47] and the integration of Belgium natural gas system [48], as presented 
in Figure 10.3, is constructed in this section [49]. We replace the 400 MW nuclear 
generating unit at electric bus (EB) 18, a 100 MW unit at EB 7, and two 50 MW 
generators at EB 22 by windfarms of the same generating capacities. The model type 
and parameters of the wind turbine are set according to [30]. The oil steam generat-
ing units at EB 2, 13, 14, and 15 are replaced by the GFUs with the same capacity. 
Three P2Gs are installed at the gas bus (GB) 7, 10, and 16, and their capacities are 
set according to [49]. Other parameters including GFUs, P2Gs, gas prices, and heat 
value of gas are set according to [50]. The gas pressures are limited within 0.95–1.05 
times of their values at the normal operating state. Numerical case studies were con-
ducted on a Lenovo laptop with an 8565U CPU and 16GB RAM.

FIGURE 10.3 IEEE Reliability Test System with the integration of Belgium natural gas 
transmission system.
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253Risk Evaluation of Electricity Systems

10.5.1  case 1: analysIs of WInd poWer, load 
cUrtaIlment, and gas netWork

The wind speed data were acquired from the past ten years’ historical data in Texas, 
the US, from the National Oceanic and Atmospheric Administration (NOAA). Four 
locations were compared, as in Figure 10.4. The probability density of the wind speeds 
in four areas presents similar patterns. This indicates that there may exist spatial corre-
lations. We further cluster the wind speed into eight states for Monte Carlo simulation.

During simulation, one representative scenario is presented to elaborate on the 
effect of the large share of wind generation on the electricity system operation, and 
how the fluctuation of wind power influences the gas system through P2Gs.

As shown in Figure 10.5, the large share of wind generation could endanger the 
operation of electricity system operation, even if all other generating units function 
perfectly. At 3:00 and 7:00 before the 400 MW unit failure, there are small elec-
tric load curtailments of 0.25 and 0.89 MW, respectively. After the unit failure at 
11:00, though the wind power is approximately the same during 12:00–16:00 as in 
 3:00–7:00, the electric load curtailment increases dramatically. The total electric 
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energy loss reaches 269 MWh. Due to this, the operation cost also increases. This 
indicates that with this level of wind penetration, the electricity system is vulnerable 
against possible failures of large generating units.

From the perspective of the gas system, as in Figure 10.6, we can observe that the 
gas system provides effective support to the electricity system. During the wind power’s 
peak period, P2Gs consumed surplus electricity and produced 0.13 Mm3 gas. While 
during the electricity generation shortage, the GFU raises its production by 24.16% to 
cover the electric load. Although the gas injection from P2Gs leads to slight fluctua-
tions in the nodal gas pressures, they are still within a secure and controllable range.

10.5.2  case 2: temporal-spatIal relIaBIlIty analysIs

The temporal-spatial reliability indices are calculated in this case. EID and RSOL of 
the whole electricity system during the operational phase are shown in Figure 10.7. 
All components are preset in perfect-functioning states, so the system EID and RSOL 
are zero at the beginning. With the state transitions of wind speed and other genera-
tors, EID and RSOL increase to 2.58 MW and 0.023, respectively.

EID and RSOL during the operational phase are further specified to each EB, as pre-
sented in Figures 10.8 and 10.9, respectively. We can observe that EB 10, 9, and 5 have the 
highest EID and RSOL. Particularly for EB 10, its RSOL is significantly higher than that 
of other EBs, which indicates that those EBs are more likely to suffer load curtailment.

10.5.3  case 3: comparIson of dIfferent WInd speed levels

The endowment of wind power varies in different locations in the world. To draw 
a more generalized conclusion, this section conducts a sensitivity analysis, to 
explore the effect of different wind speed levels on temporal-spatial risks of the 
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255Risk Evaluation of Electricity Systems

electricity system. The probability distribution of wind speed is the same as in Case 
1, while the expectation of the stochastic wind speed is different.

Figure 10.10 shows the variation of wind speed expectations with the system-level 
risk indices. With the increase in the expectation of wind speed, the system risk 
indices first decrease and then increase, which is due to the cut-out speed of the wind 
turbines. The lowest risks appear around 13.5–15 m/s.; above this speed zone, with 
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256 Renewable Energy Integration to the Grid

the increase of wind speed expectation, the wind speed will be more likely to exceed 
the cut-out speed, and the generation of windfarms will decrease. Thus, the electric-
ity system becomes more likely to suffer a load curtailment.

10.6  CONCLUSIONS

The temporal-spatial risks of electricity systems under a large share of wind power 
have been evaluated in this chapter. Natural gas networks are integrated to the electric-
ity system to promote the utilization of wind power. Numerical simulations indicate 
that the large share of renewable generations does have influences on the reliability of 
the electricity system. Its fluctuation, as well as intermittency, makes electricity sys-
tems more vulnerable against possible generating unit failures, e.g., the electric load 
curtailment even increased to 40.53 MW. On the other hand, the gas system provides 
effective support to the electricity system. During the wind generation’s peak period, 
P2Gs consume electricity to produce 0.13 Mm3 gas, while during the electricity gen-
eration shortage, the GFU raises its production by 24.16% to satisfy the electric load. 
Furthermore, the temporal and spatial risk indices indicate that the risk of the system 
is increasing during the operation. EB 10 is most likely to suffer from load curtailment.

The conclusions strongly indicate the necessity of temporal and spatial risk evalu-
ation when the electricity systems are highly penetrated with renewable energies. 
The risk assessment technique proposed in this chapter can be further developed and 
utilized in contingency management, day-ahead unit commitment, and other perti-
nent decision-making.
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