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The developments of energy storage and substitution techniques have made it possible for customers to self-
schedule their energy consumption behaviors, to better satisfy their demands in response to uncertain supply
conditions. The interdependency of multiple energies, the chronological characteristics, and uncertainties in the
self-scheduling context bring about additional complexities to secure the reliable energy requirements of multi-
energy customers. As a necessary and challenging task, the operational reliability of multi-energy customers is
tackled in this paper. Considering that the consumed energies eventually come down to the energy-related
services, the self-scheduling of multi-energy customers is implemented from the perspective of specific energy-
related services rather than energy carriers. Firstly, an optimal self-scheduling model for multi-energy customers
is developed with the consideration of chronological service curtailment, service shifting and possible failures
during service shifting. In the optimal self-scheduling model, the costs of service curtailment and shifting are
formulated based on the proposed evaluation method. The time-sequential Monte Carlo simulation approach is
applied to model the chronological volatilities of multi-energy demands over the entire study period, embedded
with a scenario reduction technique to reduce the computational efforts. Taking full account of the possible
scenarios, the quantitative reliability indices of the multi-energy customers can be obtained. The results in test
cases demonstrate that the expected energy not supplied of the multi-energy customer drops significantly by
56.32% with the self-scheduling strategy. It can be also concluded that, the self-scheduling and its inherent
uncertainties do have significant impacts on the operational reliability of the multi-energy customer.

1. Introduction customer. With access to multiple energy supply infrastructures, multi-

energy customers are provided with flexible options for satisfying their

In recent years, the interaction among different energy sectors has
been intensified by energy conversion devices such as air conditions
and gas boilers on the demand side [1]. In Denmark, the electricity
generation from local CHP has raised by 13% from 2015 to 2016, where
natural gas takes 25.84% of the fuel consumption [2]. The interaction
of different energies gives birth to the concept of multi-energy
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energy-related service needs. For example, space heating may be pro-
vided through electrical air conditions or direct thermal power from
district heating networks. The parts of services that can be scheduled by
multi-energy customers are referred to as multi-energy flexible services
(MEFSs) [3]. Apart from service curtailment and service shifting among
different time periods, available options for customers include shifting
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Nomenclature NL number of energies
NM number of services
Abbreviations a, B,y  proportions of curtailable, shiftable, and fixed services
X, x upper and lower boundaries of variable x
MEFS multi-energy flexible service H set of load levels
CDF customer damage function NH number of load levels
TSMCS time-sequential Monte Carlo simulation acH set of fluctuating parts of the need of service m
MIP mixed integer programming Anp state transition rate from load level h to load level p
GA genetic algorithm A5 state transition rate of imperfect switching process
AP appliance b T start-up failure probability and mean shut-down time
FS fixed service NK number of time periods
CS curtailable service Xm» @n  Proportions of electricity consumption and interruption
SS shiftable service cost of service m
PDF probability density function H, heat value of natural gas
TOC total operational cost 9] multiplier for calculating service curtailment cost
uIC unexpected interruption cost Ly, set of available energies for service m
SCC service curtailment cost NM; number of services consuming energy [
SSC service shifting cost NS number of simulation times
LOLP loss of load probability ST duration of entire study period
EENS expected energy not supplied $rans coefficient of variance for EENS
Indices Variables
I,m energy indices, service indices es supply of energy
k, k, ik time period indices d, g, demand of energy [, and need of service m
p, h load level indices dg,, fluctuating part of the need of service m
Tis b duration and beginning time of period k
Parameters and sets Pr probability
cSm, SSy,  curtailable part of service m and shiftable part of service m
ES set of energy supplies Ssm fixed part of service m
D, G sets of energy demands for customers and needs for ser- Xim state of alternative appliance APy,
vices U uniformly distributed random value between (0,1)
¢, distribution factor and efficiency

the MEFSs from one energy type to another in term of energy sub-
stitution. In this manner, customers can self-schedule their energy
consumption behaviors to minimise operation cost [4].

The self-scheduling of flexible loads in multi-energy systems has
been discussed in previous papers. In the study [5], a comprehensive
model was proposed for self-scheduling an energy hub to supply the
cooling, heating and electrical demands of a building. Real-time de-
mand response in a multi-energy distribution system with its potential
and arbitrage was studied in [6]. Optimal day-ahead scheduling of the
multi-energy demand in an integrated urban energy system was ex-
plored in [7], with specific consideration of using different energy
supply and conversion devices to minimize the day-ahead operation
cost. The scheduling and interaction between the electricity and heat
demands in a smart building were outlined with incentive energy price
in [8]. Additional uncertainties and risks from the renewable genera-
tions and the electricity and thermal load were incorporated in the
stochastic scheduling framework in [9]. The interactive strategy among
a cluster of multi-energy customers was modelled as an ordinal po-
tential game with a unique Nash equilibrium in [10].

On the other hand, the development of information and commu-
nication technology also laid the physical foundations for implementing
self-scheduling of multi-energy customers. In study [11], the residential
multi-energy customers were incorporated into automatic decision
making technologies, where the household demand, i.e., water heater,
stove, can be optimally controlled in the real-time frame. Similar re-
search was also conducted for the industrial customers in Ontario Clean
Water Agency water pumping facility [12]. Transactive energy mod-
elling of a multi-energy demand response business case, and its arbit-
rage opportunities in providing ancillary services were introduced in
[13,14]. Moreover, initiatives such as GridWise and IntelliGrid in the

USA and SmartGrids in the EU, have demonstrated progress in pro-
viding customers with multiple energy choices to maximise operational
efficiency [15]. It has been evidenced both theoretically and practically
that the self-scheduling of multi-energy customers’ MEFSs contributes
to reducing the customers’ operational costs, as well as maintaining the
balance between the system energy supply and demand.

Undoubtedly, securing reliability and minimising service interrup-
tion are prerequisites for customers to self-schedule their MEFSs ap-
propriately. Hence, an effective tool is necessary for monitoring and
enhancing the customer-side reliability during the operational horizon.
Extensive researches have addressed the reliability of separated elec-
tricity [16], gas [17], and heat systems [18] in the past few decades,
while recently, the reliability modelling of the multi-energy system
(MES) begin to draw great attention. Study [19] laid us the foundation
of modelling the reliability of MES based on the concept of Energy Hub.
Study [20] furtherly described the reliability of components in MES
using a generalized multi-performance weighted multi-state k-out-of-n
system. On the other hand, some researches evaluated the reliability of
MES considering the energy management among the integrated energy
distribution networks. A smart agent communication based method was
proposed in [21] to improve reliability evaluation efficiency. A hier-
archical decoupling optimization framework and impact-increment
based state enumeration method were put forward in [22] to tackle the
non-converge and low-efficiency issues in MES optimal power flow and
to enhance the reliability efficiency, respectively. However, the beha-
viours in the customer-side are usually omitted in these researches.

There are a few studies partially addressing the reliability issues in
the customer-side. The adequacy of multi-energy customers was eval-
uated in [23], and the dynamics of thermal loads were integrated into
the operational reliability evaluation of MES in [24] using Monte Carlo
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simulations. Despite that the self-scheduling of energy consumption
behaviors and its influence on the reliability of power systems have
been well developed [25], there still lacks studies on the reliability of
multi-energy customers considering self-scheduling strategies, espe-
cially in terms of energy substitution and its chronological character-
istics during the operational horizon. It should be noted that the in-
tegration of different energy infrastructures will result in significant
complexities in the reliability evaluation of customers. Firstly, in the
case of an energy interruption, customers can shift to another energy
type to provide the same service. This indicates that a service inter-
ruption is not simply determined by a single energy supply, but asso-
ciated with the redundancies of other alternative energy supplies.
Moreover, possible random failures during service shifting and de-
ployment, as well as the fluctuation in the energy supplies and de-
mands, will have significant impacts on the operational reliability of
multi-energy customers [26]. Therefore, it is challenging to evaluate
the operational reliability while considering both the energy substitu-
tion and multiple uncertainties during the self-scheduling of MEFSs.
Meanwhile, the interruption of service will bring associated economic
loss, which needs to be quantitatively evaluated in the reliability ana-
lysis. Such economic loss is usually characterized based on customer
damage function (CDF) [27]. However, the traditional CDF is for-
mulated with electricity shortages and utilized in power systems.
Therefore, it needs to be expanded for measuring the economic loss
associated with the interruption of multi-energy services.

In order to address the research gaps as aforementioned, this paper
aims to evaluate the operational reliability of multi-energy customers,
during which the flexibilities and uncertainties brought by self-sche-
duling with multiple energies are explored. The original contributions
of this paper are illustrated as follows:

(1) A service-based self-scheduling model for multi-energy customers is
proposed.

Considering that the consumed energies eventually come down to
the energy-related services, the self-scheduling of multi-energy custo-
mers in this paper is implemented from a novel perspective of specific
services rather than energy carriers. The chronological characteristics
of service curtailment and shifting are also integrated into the self-
scheduling model. The service-based point of view is novel and prac-
tical in managing the customers’ energy consumptions and calculating
the interruption costs.

Multi-energy
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(2) Multiple uncertainties, particularly the inherent uncertainties
during the service shifting are incorporated into the self-scheduling
model.

Both the possible random failures during the service shifting and
deployment, and fluctuations in the energy supply and demand are
incorporated into the self-scheduling model. Particularly, this paper is
the first to consider the inherent uncertainties during the service
shifting among alternative energies, where the possible failure is
modelled as an imperfect switching process. The time-sequential Monte
Carlo simulation (TSMCS) approach embedded with a scenario reduc-
tion technique is developed to cope with the uncertainties [28]. Taking
full account of the possible scenarios, the quantitative reliability indices
of the multi-energy customers can be obtained.

(3) A generalized CDF model is developed for calculating the curtail-
ment and shifting costs of multi-energy services.

In each scenario generated by TSMCS, the optimal self-scheduling of
MEFSs is formulated with the objective of minimising interruption cost
during the operational horizon. Considering the electricity can cover
most of the services, the CDF of the electricity sector is decoupled into
each service, and then used to reconstruct the interruption costs for
other energies, and service curtailment and shifting costs.

2. General description of multi-energy customers and energy-
related services

2.1. Introduction to multi-energy customers and energy-related services

Fig. 1 depicts the structure of a multi-energy customer and its en-
ergy-related services. The general structure involves three sections,
namely the multi-energy supply, appliances, and services required by
the customer. The multi-energy supply generally includes multiple
types of energy input portals, such as those electricity, natural gas, and
heat. The services are categorised according to the requirements of
customers, including space heating, water heating, cooking, and
lighting, etc. The appliance section links the energy supplies and ser-
vices, and each appliance consumes a certain type of energy to provide
a specific service.

Particularly in the service-based self-scheduling context, each ser-
vice can be divided into three parts: curtailable service (CS), shiftable
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Fig. 1. Overview of multi-energy customers and energy-related services.
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service (SS) and fixed service (FS). The CS is defined as the part of the
service that is not crucial and can be curtailed by sacrificing the cus-
tomer’s comfort. For example, the temperature setpoint of an air con-
ditioner in the summer can be turned up several degrees in exchange for
an electricity demand reduction. The FS is defined as the vital part of a
service that cannot be curtailed, or the part of a service that cannot be
controlled automatically, such as traditional lights without remote
switches. In this paper, the SS is defined as the part of the service that
can be shifted among both time periods and energies. For example,
certain cooking services originally depending on natural gas can be
rescheduled to another time and satisfied by electromagnetic ovens.
Both the CS and SS are defined as MEFSs. The mathematical description
of multi-energy customers can be found in the Appendix A.

2.2. Chronological multi-state model for multi-energy supply and demand

The service needs are difficult to predict precisely. Therefore, they
are usually modelled as stochastic distributions [3]. From the per-
spective of time, the service needs appear to be sequentially connected
in the historical load data [29]. In this paper, the multi-state model is
modified to represent both the uncertainties and chronological char-
acteristics of service needs [29].

The need for service m is modelled as the sum of two parts, the basic
service need g, and fluctuating part of service need dg,. The basic
service need is provided as a certain value at a time point. The fluc-
tuating part of service need can be clustered into NH levels according to
the historical data. The set of all levels is denoted by
H =1{1, ..,h, ...NH}, and the set of the fluctuating part of the need for
service m at all levels is denoted by the vector
dGjl = {dg}, ...dg", ...dg""}. In each time period k, the fluctuating part
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of the need for service m denoted by dg,, (k) will take a value from the
set dGH. In this paper, the chronological transitions between different
levels can be modelled as a Markov process, which has been widely
adopted to predict uncertain future states in the operational phase [30].
The duration of each time period T is a random value associated with
the transition rates among different levels. The probability of T; > t can
be described by a cumulative distribution function F,(t) following an
exponential distribution [30]:

NH,p#h
Fe(t) = Pr(Ti > t) = exp -[ > Ah,p)t
p=1 (@)

where h denotes the level of the fluctuating part of the need for service
m in time period k, and the transition rate from level h to level p is
denoted by Ay,

The modeling of multi-energy supply is identical with the multi-
energy demand, which can be divided into the basic part and the
fluctuated part. The basic part is determined to follow the multi-energy
demand in the normal condition. The fluctuated part is regarded to
originate from unpredictable distributed renewable energies, such as
wind, and solar [26]. The fluctuation of the multi-energy supply can be
predicted by the multi-energy customers in the day ahead based on the
historical data [26]. On the other hand, the day ahead prediction of
distributed renewable generations was regarded to be shared within the
whole multi-energy communities in the previous studies, which means
the availability of data is ensured for the multi-energy customers
[31,32].
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3. Optimal self-scheduling of multi-energy flexible service

Considering the volatilities of the energy supplies and the chron-
ological characteristics of multi-energy services as illustrated in Fig. 2,
possible scenarios can be generated for the entire study period. In each
scenario, the MEFSs of multi-energy customers will be self-scheduled to
minimise the total operational cost (TOC). The self-scheduling strategy
involve service curtailment and service shifting. In order to explore the
impacts of these self-scheduling behaviors on the multi-energy custo-
mers’ reliability, the chronological characteristics and uncertainties of
the MEFSs during self-scheduling are modelled. Moreover, the costs
during self-scheduling of MEFS are reconstructed from electricity CDF,
and the optimal self-scheduling of MEFS is formulated accordingly.

3.1. Chronological characteristics of service curtailment and service shifting

The shifting path of MEFS can be divided into two dimensions,
shifting among time periods and shifting among different energy types,
as illustrated in Fig. 3. The service shifting among time periods are also
referred to as energy substitution. In order to replace the same amount
of shifted-out service m provided by the original appliance AP, ,, for the
time length T;, the new appliance APy, should be in operation for time
length T with a corresponding new efficiency. For example, the effi-
ciency of electric boilers for providing hot water is assumed as 0.5.
Electric boilers should be operated at a rated power of 2 MW for 2h to
provide a certain amount of water heating service. If the same service is
shifted to use gas boilers with an efficiency of 0.8 and a rated power of
2.5 MW, the deployed time is 1 h. The service shifting process discussed
above can be formulated as follows:
sl k> k' (m, k)’?z.mTk = SSz[f > Ik—> ke (m, k)’?z',m T, Y m, k 2)
where ss?%, ;. _» 1-(m, k) represents the shifted-out amount of the need
for service m using energy ! in time period k, which is intended to be
shifted into time period k' using energy I'. It should be noted that the
original energy consumed by service [ is given, while the energy shifted
into I is selected by multi-energy customers. The amount of corre-
sponding service deployment in time period k' of energy I’ is denoted by
SSI% 5 > 10 (M, ).

The capacities ¢s, (k) and 55, (k) set the upper boundaries of the
implemented CS and SS of service m in time period k, namely cs,, (k)
and ss™% ;> p(m, k), as in (3) and (4).

0 < sy (k) < TS (k) 3

0 < 882 s w(m, k) < 55, (k)

(€]

Following the self-scheduling process, the updated energy demand
d/ (k) is:
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dj (k)
NM; NM;
=di(k) — D, csm(k) — D s pes 0 (m, k) +
m=1 m=1
NM; NK
z Z st Lk'—> K(m', k')
m'=1 k'=1 5)

where NV, is the number of services consuming energy [ and NK is the
number of time periods.

3.2. Uncertainties of service deployment among alternative energies

In the service shifting context, a service may be maintained using
alternative energies, by switching to another corresponding appliance.
This process is defined as service deployment. However, the switching
process from one energy type to another is not completely reliable,
which may have further significant impacts on the operational relia-
bility of multi-energy customers [19,33].

The imperfect switching model has been widely applied to the re-
liability evaluation of engineering back-up systems [34]. As illustrated
in Fig. 4, a single switching process can be represented by a three-state
model, consisting of the standby state (state 1), in-service state (state 2),
and failure state (state 3). The stochastic transition among different
states is modelled as a Markov process, and the necessary corre-
sponding information is presented in the space diagram in Fig. 4 [30].

Once the simulation of study period begins, the potential appliance
to be substituted is in initial state 1. In the following, it is assumed that
the supply interruption of energy [ occurs in time period k, and hence
the appliance AP, is forced to be out of service. To satisfy the same
service m, the amount of service ss™% ;;_ -(m, k) is covered using the
remaining capacity of appliance APy ,, where energy !’ is consumed to
maintain service m. During the deployment of service m, APy, may be
turned on successfully into state 2, or may fail to be deployed and
transit into state 3, where the actual deployment of the shifted-out
service ss/”, x> ' (m, k) = 0. When time period k is over, the sub-
stitutional appliance is assumed to be initialised rapidly and to recover
to state 1.

The transition rates among states are calculated using (6) and (7),
where p, is the start-up failure probability, and T; is the mean shut-down
time.

A, =1 = p)/T; 6)

13 =np/T @

The reliability representation for a single alternative energy has
been given above. Under some circumstances, several alternative en-
ergies could be available to deploy service m, where the number of
alternative energies is NL,, — 1. For example, two energies are available
to be deployed supposing NL,, = 3. The state space diagram presented
in the right half of Fig. 4 considers a shift in the service from energy k to
ll or lz.

Shift out
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Fig. 3. Chronological service curtailment and service shifting.
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Fig. 4. State space diagram of service shifting from a single alternative energy to multiple alternative energies.

After integrating random failures of service deployment into self-
scheduling, (5) should be updated as follows:

d/(k)
NM; NM;

=di(k) = D, esm(k) = D5 S5 g s o (m, k) +

m=1 m=1
NL NK NM,

E Z 2 X (K)ssi s s (', K)

I'=1 k'=1 m=1

®
where X, ,, (k) represents the state of alternative appliance AP p:

0, if AP, isatstate 1 or 3

Xim(k) =
tm (k) {1, if AP\, is at state 2

©)

3.3. Formulation of optimal self-scheduling of multi-energy flexible service

The optimization objective for the self-scheduling of multi-energy
customers is to provide the required services with a minimal TOC,
which is related to the unexpected interruption cost (UIC), service
curtailment cost (SCC), and service shifting cost (SSC), as in (10). In the
case when the multi-energy demand exceeds the supply, customers can
shift or curtail a part of relatively unimportant services to minimize the
unexpected interruption of the important services. It is reasonable since
the costs related to the curtailment and shifting of the unimportant
services are far below that due to the unexpected interruption of the
important service. Besides the data in the supply side, the required data
in the customer side, such as the information on the appliance and
services, can be easily accessed or analysed from historical data.

Mini TOC = UIC + SCC + SSC

imise
esm)Ss_ s o Umk).E (m k). (m,k)
- (CDE(T)-(d{ (k) — es{ (k))-sgn(d{ (k) — es/ (k)))
+CCE(T) 2 ¢5 (k) + SCEy (b0

NM
= b)) Do S8 e > 1 (m, k)

=X
10

1, x>0
where  sgn(x) = {0, <0
, es)(k), for V k,es;(k) >0
es/ (k) = {NlK ;{Vfl es(k), for 3k, es;(k) =0
spikes during the multi-energy supply interruption. The detailed ex-
planations for other terms in (10) are as follows:

The customer damage function (CDF) of energy I (CDF) is used to
quantify the UIC. When unexpected interruption of energy supplies
occurs, the on-going services might be interrupted and consequently,
the customers suffer economic losses. Therefore, it is essential to in-
clude this kind of loss into reliability evaluation. The CDF for electricity
in previous studies associated with the type of the customers, duration
of the interruption and the quantity of the interrupted service. The

es/(k) is set according to

to avoid further demand

customer types refer to the industry sector, commercial sector, re-
sidential sector, etc.[27]. However, there lacks CDF formulations on
other energies, such as gas and heat. Moreover, with multiple energy
supplies, the insufficiency of a single energy does not necessarily result
in the interruption of services. Considering electricity generally covers
all services, therefore it sets the baseline to decouple CDF into each type
of service and reconstruct the CDF in terms of other energies.

According to a survey conducted by the Institute for Research in
Economics and Business Administration (SNF) and SINTEF Energy
Research, the proportions of consumptions X = {x;, ...,xxy,} and inter-
ruption costs ® = {g,, ...y} of different end-use categories are pre-
sented in [35]. Supposing that ; represents electricity, the CDFs for
services can be reconstructed from:

CDE,(t) = CDFy () P/ Xn an

where y,, and ¢,, should satisfy ZZJZI Xm = Z:ﬂjl @, = 1.

The CDFs for other energy [(l # L) is constructed as a weighted sum
of CDFs for services that consume energy I:

NM;
CDE(t) = ), CDEy(6)cmM),

m=1

12)

Under the framework of self-scheduling in multi-energy customers,
service curtailment and service shifting requests should be notified to
customers in advance. The curtailment cost function CCE,, is modelled
as CCF, = w,,CDEF,, where w,, reflects the lower cost of the initiative
service interruption. The shifting cost function SCE, is calculated as:

SCE, (1) = Aty x CCE, (1)/24 13)

where Aty is the interval between the shifted-out time t,,; and de-
ployed time ¢, of the service, Aty x = tyx — tmk. Normally, we as-
sumed that the interval of service shifting is less than 24 h, namely
0 < Aty < 24.

The control variables of optimal self-scheduling of multi-energy
customers include: (1) the amount of curtailment for service m in time
period k, csy, (k); (2) the amount of service shifted out from service m in
time period k using energy [, to energy I’ and time period k',
s 1k s (m, k); (3) the time period of service deployment, corre-
lating to the original service m and time period k, k'(m, k); (4) the
deployed energy for each shifted-out service, correlating to the original
service m and period k, I'(m, k). Apart from the limitations for the
amount of implemented CSs and SSs as in (3) and (4), the deployed time
periods and energies of service m are limited by the number of time
periods NK and set of available energies for service m, L,,, as indicated
in (14) and (15).

I'(m,k)e L, 14
0<k'(m, k) <NK,k'(m, k)e Z (15)

In summary, the formulation of optimal self-scheduling for multi-
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energy customers is a mixed-integer non-linear programming (MINLP)
problem. The challenges of solving this problem mainly lie in two as-
pects: (1) it contains both integer variables and nonlinear constraints.
(2) There are enormous scenarios simulated by time sequential Monte
Carlo simulation (TSMCS), and each scenario involves an independent
MINLP model. Therefore, an effective algorithm is urgently required to
apply to the large-scale optimization problem.

Genetic algorithm (GA) has proved its efficiency in extensive pre-
vious studies regarding the scheduling the energy consumption of
customers [25,36]. It has a simple and understandable procedure, in-
cluding: (1) generate an initial population; (2) evaluate the fitness
function of each individual, namely, the scores; (3) select parents based
on the scores and produce children by mutation and crossover. Pass
down a certain proportion of elite individuals with high fitness values
directly to the next generation; (4) replace the current population with
children; (5) continue from step 2) until the stopping criteria are met.
Compared with analytical approaches such as branch and bound (BNB),
GA is robust to the nonlinearities and non-convexities, and it can bal-
ance well between the computation time and the accuracy, which is
suitable for simulating the self-scheduling of multi-energy customers
practically [25]. Moreover, it can be easily accelerated using parallel
computing techniques. Therefore, GA is adopted to solve the self-
scheduling problem proposed in this paper.

4. Procedures for operational reliability evaluation based on time-
sequential Monte Carlo simulation

For evaluating the operational reliability of the self-scheduling of
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multi-energy customers, the TSMCS approach is used to sample the
chronological levels of service needs, fluctuation in the multi-energy
supply and imperfect switching during service deployment. Moreover,
the loss of load probability (LOLP) and expected energy not supplied
(EENS) used in the power system reliability evaluation are expanded to
apply to multiple energies [21,28]. In this manner, we obtain
LOLP(T) = {LOLP,(T), ...LOLPy(T)} and EENS(T) = {E
ENSi(T), ...EENSN; (T)} for evaluating the time-varying reliabilities of
all the energies. The I elements of the vectors LOLP(T) and EENS(T)
are calculated as follows:

maxk(T) { NS ~
LOLP(T)= Y, (Z Tesgn (dj (k) — esl’(k))) / NS

k=1 is=1 (16)
maxk(T) ( NS ~ ~
EENS(T) = ), (2 Tk(d/(k)—es/(k))(sgn(d/(k)—es/(k)») / NS

k=1 is=1

17)

where max k (T) is the maximal value of k that satisfies ty;; < T, and NS
represents the simulation times. It should be noted that the TSMCS
could be a time-consuming process, as the possible scenarios will grow
exponentially with a linear increase in the components. Therefore, a
scenario reduction technique is embedded in the TSMCS procedures to
reduce the number of scenarios and improve computational efficiency.
The steps presented below are the TSMCS procedures for evaluating the
operational reliability of multi-energy customers considering the self-
scheduling of MEFS, and the corresponding flowchart is displayed in
Fig. 5.

Initialise of parameters

v

Determine the energy supply
conditions according to their

Obtain the sequence of fluctuated part of
service needs according to Step 1 - Step 3

Y
Reconstruct the CDF of each

unavailability

Simulate the fluctuation multi-

v
Merging the fluctuated part of load for a
service and the basic load profile of the
service according to Step 4

energy and service using (11)

- (12)

energy supply using similar
procedures for demand in Step 1
- Step 3

ave all services been iterated over?

Formulate the TOC using (10),
13)

Self-scheduling

Conduct optimal self-scheduling of MEFS according to (3), (4), (10), (14), and (15) using GA

of MEFS for I
multi-energy customers | Il Obtain
Amount of service Amount of shifted-out Deployed time periods Deployed energies for
services for shifted-out services shifted-out services

v

Simulate the random failures during service deployment according to (8) - (9), and

obtain the actual amount of service deployment

|
|
|
|
[
| curtailments
|
|
|
|

Calculate operational reliability indices
using (16) and (17)

Calculate the stopping criterion of
operational reliability evaluation using (19)

Is the stopping criterion satisfied?

Obtain the operational reliability indices

Fig. 5. Operational reliability evaluation procedure for multi-energy customers.
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Step 1: Calculate the steady probability of the fluctuating part of
service need at level h, Pr, for each service m [37]. Determine the
initial level for each service m using the TSMCS sampling technique
[38].

Step 2: Determine the duration of the current level and level in the
next state for each fluctuating part of need for service m. The
duration of the current level h is calculated based on the PDF de-
scribed in (1). The duration is specified as T; = InU / ngl‘p #h An,ps
where U is a uniformly distributed random value over the interval
(0,1) [38]. The probability of state h entering another state h’ is
Pry = lh,h’/ Zﬁf{h#h, Ah,h’- If ZZ’:I Pry < U< z::ll Pry, the level will
be k' in the next time period k'.

Step 3: Repeat step 2 until Zkal Ty > ST, where ST is the entire
study period.

Step 4: Merge the sequence of the fluctuating part of the need for
service m, dg, (k) and basic need for service m, g, (k) into a new
sequence g, (k), and reduce the number of scenarios as follows.
Suppose that the current time period for the basic need of service
8o, is k. Determine the scenario indices of the fluctuating part of the
need for service m, k; and k; satisfying f;, < tx <ty and
ti; € ley1 < be1, respectively, where f, denotes the beginning time
point of period k. Compare k; and k,. Note that k; > k;. If k; = ks, the
total need for service m can be calculated as
8n(k) = 8o (k) + Tnidg, (k). Otherwise, calculate the value as
follows:

8, (k)

k
= (tks+1 - fk)dgm (ky) + (tee1 — tidg,, (k) + Z dg,,, (i) (tigs1 — ti)
ik=ks

18

Step 5: Determine the condition of the multi-energy supply based on
the unavailability, similar to the process in step 1. In each scenario
simulated by TSMCS, GA is applied to solve the optimal self-sche-
duling of MEFS formed by (3), (4), (10), (14), and (15) as follows.
First, set the boundaries for control variables according to (3), (4),
(14), and (15); second, calculate the CDF for each energy and ser-
vice to form the objective function in (10). Third, solve the optimal
self-scheduling problem using GA [39]. Fourth, simulate the random
failures during the service deployment according to (8).

Step 6: Calculate the reliability indices according to (16) and (17)
based on the actual services that have been deployed. Return to Step
1 until the confidence intervals are satisfied. The stopping criterion
provided for the TSMCS is the EENS coefficient of variance &gy,
which can be calculated as follows:

{EENS = max(,/V (EENS,(T)) /EENS,(T)) 19)
where V (EENS;(T)) is the variance of EENS,;(T).
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5. Case studies and discussions

Cases studies are conducted to demonstrate the proposed opera-
tional reliability evaluation technique. Two cases are presented in this
section. Case 1 is organised to validate the effectiveness of the proposed
service-based self-scheduling model. It compares the operational reli-
abilities and costs with those in the scenario without self-scheduling. It
should be noted that the uncertainties are not included in Case 1. Case 2
aims to quantitatively analyse the impacts of uncertainties on the op-
erational reliability of consumers, and the typical service losses due to
the random failures during service deployments are considered.

In this paper, the energy supplies provided to multi-energy custo-
mers include electricity, gas, and heat, hence there is NL = 3. The basic
needs for services are illustrated in Fig. 6 [23]. The entire study period
is set to one day, with each interval for the basic need of services equal
to 1 h, hence NK = 24. Prior to self-scheduling, the electricity demand
is split into five services, and the efficiencies of the energies used to
provide the services are listed in Table 1 [23]. An efficiency of zero
means that the service cannot be provided with this type of energy. The
original gas and heat demand for customers are not split into detailed
services. Thus, the number of services adds up to NM = 7. The pro-
portions of CS and SS are set as 0.1 and 0.25, respectively. The levels of
the fluctuating part of services and their transition rates are derived
from a historical load profile during a summer week [40]. The start-up
failure probability p, and the mean shut-down time T; are set according
to [28]. The electricity CDF used in this paper is presented in Table 2
[41]. The unavailability of each energy supply infrastructure is 0.02
[33]. The convergence criterion £, is set to 0.05. The numerical si-
mulations are performed on a Lenovo laptop with an Intel® Core™ i5-
6200U 2.3 GHz and 8 GB of memory.

5.1. Case 1: Chronological characteristics of multi-energy flexible services
and the operational reliability of multi-energy customers considering self-
scheduling

In this case, in order to demonstrate the chronological character-
istics during self-scheduling, and compare the operational reliabilities
and costs after self-scheduling with their original values without self-
scheduling, the failure rate during service deployment is set to zero to
exclude uncertainties. That is, the self-scheduling of the MEFSs could be
completed perfectly without unexpected failures. The scale of the op-
timization problem and the performance of GA is presented in Table 3.
It can be seen that the average computation time for one optimization
and the relative standard deviation of the objective function value are
acceptable for the reliability evaluation of multi-energy customer.

For the sake of clarity, the self-scheduling is divided and presented
in two stages. The first stage includes service curtailment and service
shifting out, as indicated in Fig. 7. It can be observed that the self-
scheduling of MEFSs reduces the peak demands for electricity and heat

15 20

Time (hour)

Fig. 6. Daily load profile of multi-energy services.
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Table 1
Efficiencies of energies to provide services.

Applied Energy 254 (2019) 113531

Water heating Space heating Cooking Lighting Other electricity service Gas service Heat service
Electricity 0.5 0.1 0.2 1 1 0.5 0.5
Gas 0.5 0.4 0.8 0 0 1 0.5
Heat 0.5 0.5 0 0 0 0.5 1

Table 2
Estimated average electric customer interruption costs with different durations.

Interruption cost Interruption duration

Momentary 30 min 1h 4h 8h
Cost per unserved kWh ($) 96.5 22.6 15.3 13.0 10.6
Table 3
Scale of the optimization problem and the performance of GA.
Problem scale ~ Number of time period NK 24
Number of service NM 7
Number of energy NL 3
Number of continuous variables 336
Number of integer variables 336
Number of constraints 1344
Performance Average computation time (s) 7.94
Relative standard deviation of the objective function 3.69%

value

effectively by 17.96% and 16.18%, respectively. The services shifting
out account for the 68.48% of decreasing in energy demand because of
relatively lower costs. The service shifting and curtailment are usually
implemented during the demand peaks, e.g., 7:00-12:00 and
17:00-24:00 for the electricity demand. It should be noted that the gas
demand continuously maintains a high level from 0:00 to 12:00, and
the proportion of the shifted-out gas service is relatively small during
that period.

In order to clarify the behaviour of specific service during the self-
scheduling, Figs. 9 and 10 further split the curtailed and shifted-out
energy demands into different services. Indicated jointly by the histo-
gram in Fig. 9(a), and Fig. 10(a) and (b) in the time domain, the space
heating and water heating are most likely to be curtailed or shifted out,
they take 28.42% and 40.05% of the total curtailed services, and
22.33% and 37.94% of the total shifted out services, respectively.
Conclusions can be drawn from the first stage that the heating related
services are most likely to be curtailed, shifted into another period, or
substitute by another type of energy, not only owing to its relatively
lower SCC and SSC, but also easy and efficient realisation using other
energies.

The deployment of shifted-out services for each energy at the second

stage is illustrated in Fig. 8. The electricity demand is in part substituted
with the gas and heat demand, due to its wide utilization in providing
services. The shifted-out services are more likely to be deployed to the
valley periods of electricity and heat rather than gas. This characteristic
is also verified in the histogram in Fig. 9 (b) and (c). Another worth
noting point is, from the perspective of all energies, the total amount of
service shifting in is less than that of service shifting out. For example,
the amount of electricity service shifting out is 16.60 MW over the
whole study period, while the amount of electricity demand, gas de-
mand, and heat demand shifted from the electricity services are 3.58,
1.07, and 3.47 MW. This validates that the substitution among energies
during self-scheduling can promote the overall efficiency of energy
consumption.

Similarly, the deployment of energy demands is further split into
detailed services in Fig. 10 (c). Considering that the deployed electricity
demand from heating service and the deployed heat demand from gas
service cannot be furtherly split, and the deployed gas demand from
electricity service is all cooking service, the deployment process of
electricity and gas demand are not furtherly illustrated based on the
specific service. However, the deployed heat demand from electricity
service can be further split into the water heating and space heating, as
presented in Fig. 10(c). Observed from Fig. 10(b) and (c), it is also
validated that although the water heating and space heating shifted out
are roughly the same, the proportions of those deployed in the heat
demand differ remarkably, owing to their different efficiencies pro-
vided by electricity.

We can further compare the operational costs and reliabilities in
Figs. 11 and 12 to analyse the benefits from self-scheduling. The self-
scheduling of MEFS reduces the operational cost by 14.05%, as well as
reduces the EENS of multi-energy customers significantly by 56.32%. In
Fig. 11, the times of the three operational cost peaks are approximately
10:00, 15:00, and 20:00, which are consistent with the times for the
electricity and heat demand peaks. During the first peak time at ap-
proximately 10:00, the operational cost is mainly composed of the SCC
and SSC, because there is enough redundancy in the other energies or
time periods for services to be deployed, and therefore unexpected
service interruptions can be minimised. During the third peak at ap-
proximately 20:00, the UIC becomes enormous because the im-
plemented CSs and SSs are limited by their maximum capacities. The
operational reliability indices following self-scheduling in Fig. 12 ap-
pear to exhibit a peak and valley pattern similar to that of the opera-
tional cost in Fig. 11. It can be concluded that the self-scheduling of

204[ | Electricity demand 337 10 Heat demand

_184|[_| Curtailed electricity services 3.04 Curtailed heat service
Z 164 Shiftout electricity services 84 Shiftout heat service
g 1 < 25 B
- 14
E S =
g 129 = 2.0 =
15 =
3 10 g g
%’ 8- 3 1.5 :%
el %2} <
g 6] & 1.04 =
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Fig. 7. Service curtailment and service shifted out during self-scheduling.
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Fig. 9. (a) Histogram of services to be curtailed or shifted out; (b) histogram of energies to be deployed; (c) histogram of periods to for deployment.

MEEFSs is effective in improving the operational reliability of multi- 4500 SSC
energy customers, particularly during peak hours. 4000 - SCC
In order to quantify the influence by MEFS, four scenarios with
different CS and SS proportions are studied, and the results are listed in 3500 UI.C.
Table 4. It can be observed that the EENSs and LOLPs for all energies 3000 - Original total cost
without MEFSs in scenario A are larger than those in the other sce- 2 2500
narios, where the self-scheduling of MEFS is taken into account. \g
Moreover, by comparing the last three scenarios, we can conclude that 3 2000
with a greater proportion of MEFSs, although the EENSs and LOLPs are 15004
not monotonic for some energies, generally the EENS and LOLP for
multi-energy customers will decrease. 1000+
500 -
5.2. Case 2: Impacts of multiple uncertainties on the operational reliability 0'0 é 1'0 1'5 2'0 2'5
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In this case, the uncertainties from random failures during service Fig. 11. Economic benefit from self-scheduling.
deployment are studied. The failure rate for service deployment is in-
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Fig. 10. (a) Electricity service curtailment during self-scheduling; (b) Electricity services shifted out during the self-scheduling; (c) Electricity services deployment
during self-scheduling.
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Fig. 12. Reliability benefit from self-scheduling.

random failures on the operational reliability of multi-energy custo-
mers. Fig. 13 presents a typical example of service losses due to random
failures during service deployments. The orange and purple areas in-
dicate the differences between the scheduled demand and actual de-
mand. It tends to occur at the times of the demand valleys, when service
deployments are most likely to take place. It can be observed from
Fig. 14 that, when random failures during service deployment are
considered, the operational reliability of multi-energy customers will be
slightly inferior. The EENSs for electricity, gas, and heat increase by
4.04%, 7.84%, and 2.16%, respectively.

Furthermore, in order to quantify the impacts of random failures
during service deployments, four scenarios with different failure rates
are considered. The reliability indices are listed in Table 5. It can be
observed that the failure rate of service deployment will significantly
influence the reliability of multi-energy customers. The operational
reliability of customers will be inferior when the failure rate increases.
Summarised throughout the two case studies, we can find that even
taking the negative impacts from random failures during the service
deployment, the operational reliability of multi-energy customer can
still be improved by implementing self-scheduling.

5.3. Case 3: Validation of the proposed technique using a practical case

In order to demonstrate and validate the proposed self-scheduling
strategy and corresponding operational reliability evaluation technique
practically, a new urban district in East China is utilised in this case.
This district is involved in a demonstration project on the transforma-
tion towards a multi-energy smart district, and therefore its energy
demand is metered and kept in record in high resolution.

Here we take a group of high-rise apartments located in the west of
this district as a typical example for a residential multi-energy cus-
tomer. It occupies a 1.70 X 10°m? land area and owns a 2.54 x 10° m?
construction area. The experiment is conducted in a representative
winter day, where the peak demands for electricity and heat are 4.74
and 1.89 MW. The massive electricity demand data are available on
Electric Energy Data Acquire System of the State grid corporation of
China, while the heat demand is derived from the metered mass flow
rate and the temperature differential of the supply and return water in

Table 4
Reliabilities of the multi-energy customer with different CS and SS proportions.
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Fig. 13. Representative service losses due to random failures during service
deployments.

the pipelines [42]. The quantity of heating-related services, including
water heating and space heating, in electricity demand, is derived by
comparing the typical summer electricity demand and the non-sea-
sonable electricity demand in spring or autumn.

Its daily load profile is presented in Fig. 15. Only electricity and heat
demands are involved in this case, NL = 2. Corresponding to that,
compared with Case 1, the cooking and gas services are no longer
available in the self-scheduling context, NM = 5. Other parameters are
set the same as in Case 1.

The two-stage self-scheduling of the multi-energy customer is illu-
strated in Figs. 16-18. It can be observed in Fig. 16 that by im-
plementing self-scheduling, the multi-energy customer has reduced its
electricity and heat peak demands by 24.35% and 4.27%, respectively.
The shifted out services account for 71.79% of the decreasing in energy
demands. Seen from the perspective of services in Fig. 17, heating-re-
lated services, including water heating and space heating, are still the
major MEFSs for self-scheduling, which takes 45.80% and 41.83% of
the total curtailed services, and 42.32% and 54.23% of the shifted out
services. It confirms the conclusion in Case 1 that the large proportion
of heat-related service will be a prerequisite to promote the effective-
ness of self-scheduling.

As demonstrate in Fig. 18, previously shifted out services tend to be
deployed at 23:00 — 8:00. From the perspective of all services, the total
quantity of deployed services is 3.86 MW, presenting a remarkably re-
duction by 55.71% compared with 9.13 MW shifted out services. This
indicates that the self-scheduling is not only efficient in reallocating the
services temporally to improve the operational reliability and opera-
tional cost, but also in promoting the overall efficiency of energy con-
sumption.

Scenario Proportion of CS Proportion of SS Electricity EENS (MW) Gas EENS (MW) Heat EENS (MW)

A 0 0 0.0295 0.0016 0.0189

B 0.1 0.25 0.0127 0.0006 0.0121

C 0.1 0.50 0.0065 0.0015 0.0124

D 0.3 0.50 0.0058 0.0007 0.0070

Scenario Electricity LOLP (/hour) Gas LOLP (/hour) Heat LOLP (/hour) EENS for multi-energy customers (MW) LOLP for multi-energy customers (/hour)
A 0.0083 0.0125 0.0110 0.0500 0.0125

B 0.0089 0.0044 0.0107 0.0254 0.0107

C 0.0078 0.0054 0.0109 0.0204 0.0105

D 0.0071 0.0049 0.0093 0.0136 0.0093
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Fig. 14. Impacts of random failures on the operational reliability of multi-energy customers.
Table 5

Reliability of multi-energy customers

considering different failure rates.

Scenario Failure rate Aﬁ 3 (/hour) Electricity EENS (MW) Gas EENS (MW) Heat EENS (MW) Electricity LOLP (/hour)
A 0 0.0121 0.0006 0.0112 0.0083
B 0.1 0.0128 0.0008 0.0119 0.0089
C 0.3 0.0139 0.0007 0.0113 0.0083
D 0.5 0.0154 0.0003 0.0117 0.0117
Scenario Failure ratel ; (/hour) Gas LOLP (/hour) Heat LOLP (/hour) EENS for multi-energy customers (MW) LOLP for multi-energy customers (/hour)
A 0 0.0043 0.0107 0.0239 0.0107
B 0.1 0.0054 0.0110 0.0255 0.0110
C 0.3 0.0056 0.0116 0.0259 0.0116
D 0.5 0.0056 0.0136 0.0274 0.0136
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Fig. 15. Daily load profile of multi-energy services in a practical case.
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Fig. 16. Service curtailment and service shifted out during self-scheduling in the practical case.

In order to validate the effe

ctiveness of self-scheduling in the

practical case, the reliability indices of the multi-energy customer are
obtained and compared in three scenarios, as presented in Table 6. The
reliability indices in Scenario A are calculated without implementing

12

self-scheduling, and the reliability indices in Scenario B are calculated
after self-scheduling, but the uncertainties are excluded. In Scenario C,
the reliability indices are calculated taking full consideration of un-
certainties, and the failure rate for service deployment is set to
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Fig. 17. Electricity service curtailment and shifted out during the self-scheduling in the practical case.
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Fig. 18. Service deployment from each energy during self-scheduling in the practical case.

Table 6
Impacts of self-scheduling and uncertainties on the reliability of the multi-en-
ergy customer in the practical case.

Scenario A Scenario B Scenario C
Electricity LOLP (/hour) 0.0092 0.0059 0.0073
Heat LOLP (/hour) 0.0127 0.0111 0.0120
LOLP for the multi-energy customer 0.0136 0.0118 0.0130
(/hour)
Electricity EENS (MW) 0.0074 0.0010 0.0014
Heat EENS (MW) 0.0066 0.0038 0.0042
EENS for the multi-energy customer (MW)  0.0140 0.0049 0.0056

APz =0.3. It can be observed that the reliabilities in terms of all the
energies benefit from self-scheduling. The LOLP and EENS of the multi-
energy customer reduce by 13.24% and 65.00%, respectively. More-
over, it confirms that even considering the uncertainties such as a re-
latively high failure rate for service deployment, the reliability can still
be improved, where in this case, the LOLP and EENS of the multi-energy
customer still reduce by 5.83% and 60.00%, respectively.

6. Conclusions
This paper proposes a service-based self-scheduling model for multi-
energy customers, and evaluates the operational reliability considering

the multiple uncertainties. Case studies demonstrate that the expected

Appendix A. Mathematical descriptions of multi-energy customers

energy not supplied of the multi-energy customer drops significantly by
56.32% with the self-scheduling strategy. Among various services, the
heating related services are most likely to be curtailed or shifted. The
operational cost can also be reduced. By increasing the proportion of
multi-energy flexible service, the overall operational reliability of
multi-energy customers can be furtherly improved. On the other hand,
the self-scheduling of multi-energy customers is associated with un-
certainties. Random failures during the service deployment will have
negative impacts on the operational reliabilities. However, even con-
sidering this point, the operational reliability of multi-energy customer
can still be improved by implementing self-scheduling.

With the recent intensified interaction of multi-energy infra-
structures, customers become possible and motivated to self-schedule
their energy consumption behaviors to maintain more reliable services
with lower costs. Therefore, the quantitative operational reliability
evaluation technique and corresponding conclusions presented in this
paper could provide considerable practical information in the decision
making for customers’ energy management.
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The following definitions are provided for mathematically describing the relationships among the three sections.

(1) The multi-energy supply is represented by the vector ES = {esy, ...,es;, ....esn.}, Where es; denotes the amount of energy ! delivered to the customer,

and NL represents the number of energy types.
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(2) The energy demands of a multi-energy customer are represented by the vector D = {d,, ...,d), ...,dnr}, whered, denotes the amount of energy [
required by the customer.

(3) The service needs are represented by the vector G = {g, ....g,,, ---&y}> Where g, denotes the need for service m, and NM denotes the number of
services.

The imported energy [ can be distributed into different appliances, through which the various services can be provided using different energies:
€Ly - CmMym -+ CLNMUNM 4 d; g

Gy L i CTiam d‘ - l En

CNL.,I.U;\JL,I cNL,;n'n;\lL,m CNL,NJ'VI.n;\IL,NM dNL gNM (20)

where ¢, ,, is a distribution factor describing the proportion of energy ! consumed by appliance AP, to provide service m. Obviously, there exists
Zf\zl cm = 1. 7, is the efficiency of appliance AP),.

The capacities of the CS, SS and FS parts of service m are denoted as ©s,,, 55, and f5s,,, respectively.
[CSm S fsml = [am By Wnlgy (21)

where a,,, 8, and y, denote the proportions of the three parts for service m, and a,, + g, + 7, = 1.
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