

Study on Carbon Emission and Impact Factor based on LMDI method: the Case of Jiangsu

Name: Sheng Wang^{1*}, Jian Tan², Yahui Ma¹, Haiyan Jiang¹, Aikang Chen¹, Fenghua Zou¹

Company: 1 State Grid (Suzhou) City & Energy Research Institute Co., Ltd

2 State Grid Jiangsu Economic Research Institute

Country: China

Contents

Introduction

- Carbon emission calculation
- Impact factor analysis
- Source of data
- Case studies

Background

✓ On Sep 22, 2020, in General Debate of the Seventy-fifth United Nations General Assembly, president Xi proposed the vision of Carbon Peak and Carbon Neutrality of China.

✓ in the next five years to come, Jiangsu, as well as other provinces, is still under the continuous pressure of carbon emission reduction.

Current research

Challenges

1

Online database

江苏省"十四五"应对气候变化规划

(征求意见稿)

did not count the carbon emission from the electricity received from other provinces

these two factors cannot be measured simultaneously

Contents

Introduction

Carbon emission calculation

- Impact factor analysis
- Source of data
- Case studies

Calculation using the energy balance table

Contents

- Introduction
- Carbon emission calculation

Impact factor analysis

- Source of data
- Case studies

Extended Kaya equation

Classic Kaya equation:

LMDI method

The difference of the carbon emission between the year t and the base year:

The impact from the population:

$$\begin{split} \Delta c_t &= \sum_{i \in I} \sum_{j \in J} c_{i,j,t} - c_{i,j,0} \\ &= \sum_{i \in I} \sum_{j \in J} \Delta c_{i,j,t}^p + \Delta c_{i,j,t}^A + \Delta c_{i,j,t}^B + \Delta c_{i,j,t}^C + \Delta c_{i,j,t}^D + \Delta c_{i,j,t}^\alpha \\ \Delta c_t^p &= \sum_{i \in I} \sum_{j \in J} \Delta c_{i,j,t}^p \\ &= \sum_{i \in I} \sum_{j \in J} \frac{(c_{i,j,t} - c_{i,j,0})(\ln p_t - \ln p_0)}{\ln c_{i,j,t} - \ln c_{i,j,0}} \end{split}$$

Other factors can be decomposed similarly

...

Contents

- Introduction
- Carbon emission calculation
- Impact factor analysis

Source of data

Case studies

Source of data

Data	Source
population, GDP	Jiangsu statistical yearbook
energy consumption	China energy statistical yearbook
carbon emission factor	the guideline of the provincial greenhouse gas inventories

Contents

- Introduction
- Carbon emission calculation
- Impact factor analysis
- Source of data

Case studies

General trend of the carbon emission in Jiangsu

Fig 1 Carbon emission structure in Jiangsu

- 2010-2019, carbon emission grows steadily by 27.28%.
- Coal is always the dominant source of carbon emission. However, its share is decreasing from 81.13% in 2010 to 67.39% in 2019.
- the carbon emission from outside electricity is growing rapidly by 220.90% in ten years.

Fig 2 Carbon emission intensity in typical provinces and decoupling index in Jiangsu

- Though the carbon emission quantity is increasing in recent years, the its intensity is decreasing smoothly
- the decoupling index remains between 0-0.6, which indicates that the economy and carbon emission are weakly de-linked.

Carbon emission structure

Fig 3 Carbon emission structure of energy sector in Jiangsu

industrial sector in Jiangsu

- the electricity generation and heat supply sectors mainly rely on coal, but its carbon emission decreases by 18.35% and 3.88% in recent ten years.
- The carbon emissions from coal and electricity of the industrial sector are 41.92% and 41.49%, respectively. the proportion of gas is increasing.
- the carbon emission from petroleum products of the transportation sector is 83.81%. the shares of gas and electricity grow slightly from 0.57% and 5.33% in 2010 to 6.22% and 9.94% in 2019.
- The carbon emission from the electricity is the highest in the building sector. the carbon emissions from coal, petroleum product, and heat decrease from 2.52%, 7.47%, and 1.73% in 2010 to 0.05%, 2.08, and 0.22%, respectively.

Fig 5 Carbon emission structure of the transportation sector in Jiangsu

Impact factor analysis

Fig 7 impacts of different factors on the carbon emission in Jiangsu

carbon emission of the industrial

- the impact of population on carbon emission remains in a reasonable range.
- Economy growth is the main driving force, especially for industrial and building sectors.
- The contribution of energy structure is negative in general, but positive in some years.
- The impact of industrial structure is negative. it was effective in the reduction of carbon emission by optimizing the industrial structure in the past years.
- The contribution of energy consumption intensity is negative, especially in the industrial sectors and building sectors.

Fig 9 impacts of different factors on the carbon emission of the transportation sector

Fig 10 impacts of different factors on the carbon emission of the building

Thank you